

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2023 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Electronics & Telecommunication Engineering

Duration: 3 hrs.

Course Code: 19ET5PCTLA

Max Marks: 100

Course: Transmission Lines and Antennas

Date: 01.03.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1	a) Derive the expressions for voltage and current equations of a transmission line	10
	b) Prove that $RC=LG$ is the condition for distortionless line.	06
	c) The open and short circuit impedance of a transmission line at 1.6KHz are $900\angle-30$ and $400\angle-10$. Calculate the characteristic impedance.	04

OR

2	a) Starting from the expression of voltage and current equation of transmission line, derive the expression for input impedance of a transmission line.	07
	b) Explain waveform distortion in transmission line.	07
	c) Write a short note on: i) Reflection in transmission line ii) Reflection coefficient.	06

UNIT - II

3	a) Starting from the expression of input impedance of transmission line, prove that $Z_0=\sqrt{Z_{oc} Z_{sc}}$, $\tanh \sqrt{Z_{sc}/Z_{oc}}$.	06
	b) A transmission line having a characteristic impedance(Z_0) of 50Ω is terminated in an impedance equal to $25-j75$. Find the reflection coefficient and standing wave ratio.	06
	c) Explain the application of Smith Chart.	08

UNIT - III

4	a) Explain line parameters R,L,C,G	05
	b) Derive the expression for the inductance of the coaxial line.	10
	c) Write a short note on skin effect.	05

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - IV

5	a) Define the antenna parameters: i) Beam solid angle ii) Radiation Pattern iii) Radiation efficiency.	06
	b) Stating the assumption, Derive Friss transmission formula.	08
	c) Find the directivity of an antenna having radiation resistance of 72Ω and loss resistance of 12Ω , gain of 20.	06

OR

6	a) Derive an array factor expression in case of Linear array of 'N' isotropic point sources of equal amplitude & spacing.	08
	b) Explain power theorem & pattern multiplication.	06
	c) A radio link has a 15W transmitter connected to an antenna of 2.5m^2 effective aperture at 5GHz the receiving antenna has an effective aperture of 0.5m^2 & is located at 15km line of sight distance from transmitting antenna Assuming Lossless, matched antennas find the power delivered to the receiver.	06

UNIT - V

7	a) Derive the expression for radiation resistance of a $\lambda/2$ dipole.	07
	b) Derive the electric & magnetic field of loop antenna.	07
	c) The radius of a circular loop antenna is 0.02λ . How many turns of the antenna will give a radiation resistance of 35Ω .	06
