

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Electronics & Telecommunication Engineering

Duration: 3 hrs.

Course Code: 22ET6PE2ES

Max Marks: 100

Course: Embedded System Design

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I		
			<i>CO</i>	<i>PO</i>	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Analyse the basic HW components of an ES with a block diagram	<i>CO2</i>	<i>PO1</i> 07
		b)	Analyze an Industry Standard Embedded System Design and Development Lifecycle Model	<i>CO2</i>	<i>PO1</i> 07
		c)	Analyze the Importance of the Powering Section in Embedded System Design	<i>CO2</i>	<i>PO1</i> 06
OR					
	2	a)	Design and Explain a Watchdog Timer (WDT) for Embedded Systems	<i>CO3</i>	<i>PO2</i> 07
		b)	Analyze and Design Applications of Embedded Systems such as Motor Control Systems	<i>CO2</i>	<i>PO1</i> 07
		c)	Discuss the Rules to be Followed in Hardware Schematic Design for Embedded Systems	<i>CO2</i>	<i>PO1</i> 06
			UNIT - II		
	3	a)	Analyze the Instruction-Level Parallelism ISA-MIPS Pipeline Architecture and Instruction Flow	<i>CO3</i>	<i>PO2</i> 10
		b)	Design a circuit to interface 8K ROM to an 8-bit microcontroller with 16 bit addressing lines.	<i>CO4</i>	<i>PO3</i> 10
		OR			
	4	a)	An 8-bit microcontroller uses 16 bit addressing lines. Design a circuit to interface 24K RAM.	<i>CO4</i>	<i>PO3</i> 10
		b)	Illustrate and Discuss External Memory Management by a Memory Controller	<i>CO2</i>	<i>PO1</i> 10
		UNIT - III			
	5	a)	Illustrate and Compare Serial vs. Parallel I/O, Analyzing Applications of Each	<i>CO3</i>	<i>PO2</i> 10
		b)	Analyze and Explain the Interfacing of an I/O Device with an Embedded Board and I/O Controller with Master CPU	<i>CO3</i>	<i>PO2</i> 10

		OR			
6	a)	Illustrate Communication over I2C Protocol with Timing Cycles and List Its Features	<i>CO2</i>	<i>PO1</i>	10
	b)	Analyze Features and Applications of CAN Protocol	<i>CO3</i>	<i>PO2</i>	10
		UNIT IV			
7	a)	In detail analyze the need for BSPs (Board Support Packages)	<i>CO4</i>	<i>PO3</i>	10
	b)	In detail analyze the need for POSIX standard and its significance	<i>CO4</i>	<i>PO3</i>	10
		OR			
8	a)	Identify and analyze Common Functions of a Device Driver	<i>CO3</i>	<i>PO2</i>	10
	b)	Analyze and Discuss Implementation Criteria for Device Drivers in Interrupt Handling	<i>CO3</i>	<i>PO2</i>	10
		UNIT - V			
9	a)	Illustrate and Analyze an Application Layer within an Embedded Systems Model	<i>CO3</i>	<i>PO2</i>	10
	b)	Analyze Development Tools and their Utility in Writing Code in an IDE	<i>CO3</i>	<i>PO2</i>	10
		OR			
10	a)	Analyze the System Boot-Up Process	<i>CO3</i>	<i>PO2</i>	10
	b)	Develop Pseudocode for a Device Driver for an I2C Controller	<i>CO4</i>	<i>PO3</i>	10
