

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Supplementary Examinations

Programme: B.E

Semester: VI

Branch: Electronics and Telecommunication Engineering

Duration: 3 hrs.

Course Code: 19ET6PCDCM

Max Marks: 100

Course: Digital Communication

Date: 20.09.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1	a) With block diagram explain PAM-TDM	06
	b) Derive equations to show practical aspects of sampling.	08
	c) A signal $x(t)$ consists of two frequency components $f_1 = 3.9\text{kHz}$ and $f_2 = 4.1\text{kHz}$ in such a relationship that they just cancel out each other when the signal $x(t)$ is sampled at the instants $t=0, T, 2T, \dots$ where $T=125\mu\text{s}$. The signal $x(t)$ is defined as	06

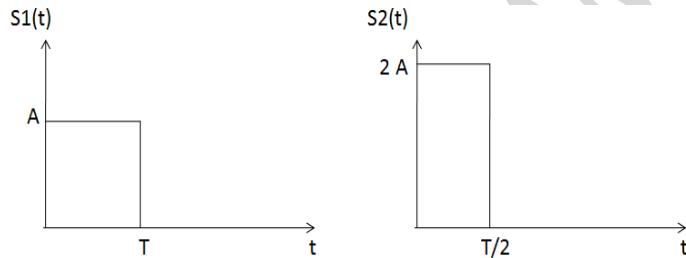
$$x(t) = \cos\left(2\pi f_1 t + \frac{\pi}{2}\right) + A \cos(2\pi f_2 t + \phi).$$

Find the values of amplitude A and phase ϕ of the second frequency component.

OR

2	a) With block diagram and equations explain DPCM	08
	b) Derive the expression for SNR for binary PCM if full sinusoid is employed.	08
	c) Consider the message signal given by $x(t) = 8\sin(2\pi t)$. Sketch the signal and the delta modulated binary data transmitted, assuming a step size of 2 and sampling interval of 0.2 sec.	04

UNIT - II


3	a) Derive the Nyquist criterion for distortionless baseband binary transmission and thereby mention its practical limitations and also solution to overcome the same.	08
	b) i) Derive the equation for overall transfer function and impulse response of modified duo binary encoder with precoder. ii) For the given input binary sequence 11010101 Obtain the modified duobinary coder output with precoder	08
	c) What is eye pattern? Explain its significance of it in understanding the ISI problem?	04

UNIT - III

4 a) Discuss the properties of matched filter. **04**
b) Discuss the procedure of Gram Schmidt Orthogonalisation **06**
c) Explain coherent PSK transmitter and receiver with block diagram. Derive the expression for probability of error. **10**

OR

5 a) With block diagram and waveforms explain the generation and recovery of ASK modulation technique. **05**
b) Derive an expression for probability of error in binary FSK generation scheme **08**
c) Two functions $s_1(t)$ and $s_2(t)$ are given in the below figure. The interval is $0 \leq t \leq T$ seconds. Using gram-Schmidt procedure express these functions in terms orthonormal functions. Also sketch $\Phi_1(t)$ and $\Phi_2(t)$ **07**

UNIT - IV

6 a) Give advantages and disadvantages of OFDM. **04**
b) Describe DPSK transmitter and receiver with appropriate block diagram. **06**
c) Derive expression for the average probability of symbol error in terms of E_b/N_0 for QPSK modulation technique along with signal space diagram **10**

UNIT - V

7 a) What is spread spectrum communication? What is its primary advantage? What are the commonly used spread spectrum technique? **06**
b) Explain the principle of DS-SS communication system. **06**
c) With block diagram explain slow FH/MFSK system. **08**
