

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

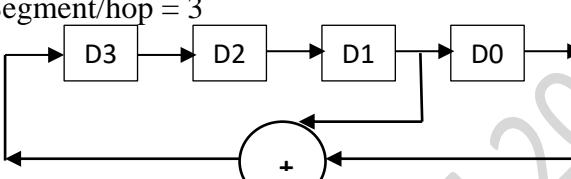
Programme: B.E.

Semester: VI

Branch: Electronics and Telecommunication Engineering

Duration: 3 hrs.

Course Code: 19ET6PCDCM


Max Marks: 100

Course: Digital Communication

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	From basic terminologies, derive the 6dB rule of Uniform quantization	CO2	PO1	10
		b)	Explain the process of natural sampling with relevant diagrams and equations.	CO1	-	10
OR						
	2	a)	Show that use of A – Law Companding and μ – Law Companding have same Companding gain if $A = \mu$.	CO2	PO1	10
		b)	Consider a sinusoidal modulating signal $m(t) = A \cos \omega_m t$ is applied to a Delta modulator with a step size δ . Prove that slope overload will occur if $A > \delta / \omega_m T_s$	CO3	PO2	10
			UNIT - II			
	3	a)	Consider a 8 bit binary sequence of alternating 1s and 0s. Sketch the waveforms for the following line codes: i. On – Off Signaling ii. Polar NRZ and RZ signaling iii. Bipolar NRZ and RZ signaling iv. Manchester Signaling	CO2	PO1	10
		b)	The following data is applied to a Modified duo-binary coder 0 1 1 0 1 1 0 0 1. i. Sketch the block diagram and write the equations of the Modified duo-binary coder and derive the output for the above data considering the pre-coded data as 00 ii. If an error occurs at position 5, show that the same does not get propagated to the next stages.	CO3	PO2	10
OR						

	4	a)	Analyze with relevant equations and diagrams the Raised Cosine Spectrum solution for overcoming ISI.	CO2	PO1	10
		b)	The following data is applied to a duo-binary coder 0 1 1 0 1 1 0 0 1 . i. Sketch the block diagram and write the equations of the duo-binary coder and derive the output for the above data ii. Consider a pre – coder with initial value of 0 and solve i.	CO3	PO2	10
			UNIT - III			
5	a)		State and prove the properties of the matched filter.	CO2	PO1	10
	b)		With relevant terminologies, derive the Probability of Error for the coherent detection of ASK.	CO2	PO1	10
			OR			
6	a)		Sketch the Constellation diagrams with relevant equations for the following modulation schemes: i. BPSK ii. BFSK	CO2	PO1	10
	b)		In an AWGN channel, the power spectral density is 4×10^{-20} Watts/Hz, bit duration of $0.5\mu\text{s}$, amplitude of received signal is $1.5\mu\text{V}$. Calculate the probability of error for BFSK for the above data.	CO2	PO1	10
			UNIT - IV			
7	a)		Explain with relevant block diagrams and equations the working of DPSK transmitter and receiver.	CO1	-	10
	b)		Explain with relevant block diagrams and equations the working of GMSK transmitter and receiver.	CO1	-	10
			OR			
8	a)		With relevant block diagrams, analyze the concept of MQAM transmitter and receiver.	CO1	-	10
	b)		Sketch the in-phase and quadrature components of a QPSK signal for the binary sequence 1 1 0 0 1 0 1 1 1 . Assume that the carrier frequency $f_c = 1/T_b$ and choose appropriate basis functions.	CO3	PO2	10
			UNIT - V			
9	a)		With relevant equations, explain the three different properties of PN Sequence.	CO1	-	10
	b)		Explain with appropriate block diagrams, equations and waveforms the generation and detection of Slow Frequency Hop Spread Spectrum technique.	CO1	-	10
			OR			

	10	a)	<p>A three stage LFSR generates the sequence 0 1 0 1 1 1 0 0 1 0 1 1 0 ...</p> <ol style="list-style-type: none"> Determine the period of the given infinite sequence Verify the three properties of the PN sequence for the given sequence 	CO3	PO2	10
		b)	<p>A PN sequence is generated using a four stage LFSR with initial condition of $[D_3 D_2 D_1 D_0] = 1000$ as shown in Fig.10b. This sequence is used in a Slow FH/MFSK system. The FH/MFSK signal has the following parameters:</p> <p>Number of bit/MFSK symbol = 2</p> <p>Number of MFSK tones = 4</p> <p>Length of PN Segment/hop = 3</p> <p>Fig.10b</p> <p>Determine the following:</p> <ol style="list-style-type: none"> PN Sequence for one periodic length Assume binary data sequence of 1 0 0 0 1 1 0 1 0 0 0 1 1 1 1 1 0 0 1, sketch the variation of de-hopped frequency with time 	CO3	PO2	10
