

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

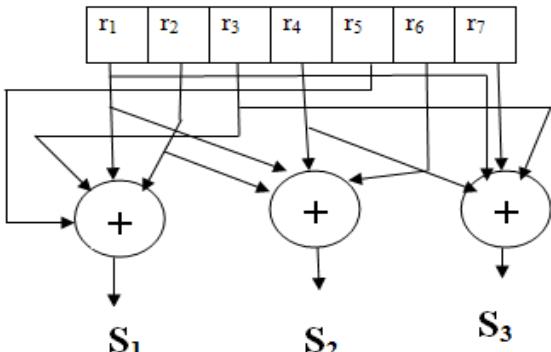
Semester: VI

Branch: Electronics and Telecommunication Engineering

Duration: 3 hrs.

Course Code: 23ET6PCITC

Max Marks: 100


Course: Information Theory and Coding

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Prove that the Entropy attains a maximum value when all the source symbols are Equiprobable	CO2	PO1	06
	b)	The channel diagram of the source is given. Compute the missing probabilities and obtain the channel matrix. Calculate $H(X)$, $H(Y)$, $H(X,Y)$ and $I(X,Y)$ given $P(X_1) = P(X_3) = 0.3$ and $P(X_2) = P(X_4) = 0.2$, $P(Y_1/X_1) = 1/6$, $P(Y_3/X_1) = 2/3$, $P(Y_2/X_2) = 1/2$, $P(Y_4/X_3) = 1/3$ $P(Y_4/X_4) = 1/2$ and $P(Y_1/X_4) = P(Y_2/X_4)$	CO2	PO1	10
	c)		CO2	PO1	04
	OR				
2	a)	Two six sided balanced dice are thrown. Find the probabilities and measure of information of each of the following events (i) One roll is 2 given that sum is 5. (ii) Value of second roll subtracted from the value of the first roll is 3. (iii) Only 5 or 6 appears on both dies.	CO2	PO1	04
	b)	Arrive at the input probabilities for the given state equations. Obtain the code tree at the end of the first symbol interval and prove that $G_1 > H(S)$, the entropy of the Source. $P(A) = P P(A) + P P(C)$ $P(B) = P P(B) + P P(A)$ $P(C) = P P(C) + P P(B)$	CO2	PO1	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	A source has a Source alphabet $S = \{S_1, S_2, S_3\}$ with $P = \{1/2, 1/4, 1/4\}$. Find the entropy of this source. Also determine the entropy of its 2 nd extension and verify that $H(S^2) = 2 H(S)$	CO2	PO1	06																
		UNIT - II																			
3	a)	The source emits 5 symbols A, B, C, D and E. The probability of Occurrence of the symbol A is (6/16). The following sequences are given $\alpha_1 = 0, \alpha_2 = \frac{6}{16}, \alpha_3 = \frac{10}{16}, \alpha_4 = \frac{13}{16}, \alpha_5 = \frac{15}{16}$ and $\alpha_6 = 1$. Compute the probabilities of B, C, D and E. Obtain the Shannon binary encoding algorithm for the source and calculate the efficiency of the source and redundancy.	CO2	PO1	08																
	b)	Consider a source with 7 alphabets as shown below with the probability of occurrence. Construct a binary Huffman code by placing the composite symbols as low as you can. Determine the efficiency and Redundancy of the code so formed	CO2	PO1	07																
	c)	Discuss the various properties of codes	CO1		05																
		OR																			
4	a)	A discrete memory less source has an alphabet of 7 symbols with probabilities for its output as described below. Compute Shannon-Fano code for this source. Find the code efficiency and redundancy.	CO2	PO1	08																
		<table border="1"><thead><tr><th>Symbol</th><th>A</th><th>B</th><th>C</th><th>D</th><th>E</th><th>F</th><th>G</th></tr></thead><tbody><tr><td>Probabilities</td><td>0.4</td><td>0.2</td><td>0.1</td><td>0.1</td><td>0.1</td><td>0.05</td><td>0.05</td></tr></tbody></table>	Symbol	A	B	C	D	E	F	G	Probabilities	0.4	0.2	0.1	0.1	0.1	0.05	0.05			
Symbol	A	B	C	D	E	F	G														
Probabilities	0.4	0.2	0.1	0.1	0.1	0.05	0.05														
	b)	State and Prove Noise less Coding Theorem	CO2	PO1	06																
	c)	Find the smallest number of letters in the alphabet 'r' for devising a code with prefix property such that $W=[0,3,0,5]$ where W is the set of number of words with word lengths 1,2,3.....	CO2	PO1	06																
		UNIT - III																			
5	a)	Derive the expression for channel capacity of Symmetric channel.	CO2	PO1	06																
	b)	Two channels are cascaded whose channel matrices are given below with $P(X_1) = P(X_2) = 0.5$. Find the overall mutual Information $I(X, Z)$	CO2	PO1	09																
		$P\left(\frac{Y}{X}\right) = \begin{bmatrix} \frac{1}{5} & \frac{1}{5} & \frac{3}{5} \\ \frac{1}{5} & \frac{1}{5} & \frac{5}{5} \\ \frac{1}{2} & \frac{3}{2} & \frac{6}{6} \end{bmatrix} \quad P\left(\frac{Z}{Y}\right) = \begin{bmatrix} 0 & 3/5 & 2/5 \\ 1/3 & 2/3 & 0 \\ 1/2 & 0 & 1/2 \end{bmatrix}$																			

	c)	A continuous random variable X is uniformly distributed in the interval (0, 4). Find the differential entropy H(X). If X is a voltage which is applied to an amplifier whose gain is 8. Find the differential entropy of the output of amplifier.	CO2	PO1	05
		OR			
6	a)	A channel has the characteristics as shown below. Find H(X), H(Y), H(X, Y) and Channel capacity if $r=1000\text{sym/sec}$ and draw the channel diagram. $P\left(\frac{Y}{X}\right) = \begin{bmatrix} 1/3 & 1/3 & 1/6 & 1/6 \\ 1/6 & 1/6 & 1/3 & 1/3 \end{bmatrix}$	CO2	PO1	07
	b)	An analog signal has a 4KHz bandwidth. The signal is sampled at 2.5 times the Nyquist rate and each sample quantized into 256 equally likely levels. Assume that the successive samples are statistically independent. <ol style="list-style-type: none"> Find the Information rate of this source. Can the output of this source be transmitted without errors over a Gaussian channel of bandwidth 50 KHz and (S/N) ratio of 20db? If the output of this source is to be transmitted without errors over an analog channel having (S/N) of 10 dB, Compute the bandwidth requirement of the channel. 	CO2	PO1	06
	c)	Show that the conditional differential entropy of Y is $H(Y/X) = H(N)$, where $H(N)$ is the differential entropy of N	CO2	PO1	07
		UNIT - IV			
7	a)	Prove that the minimum distance of a Linear Block code is equal to the minimum Hamming weight of a non-zero cod vector.	CO3	PO2	05
	b)	Design an encoder for the given syndrome calculation circuit and obtain its Parity matrix, Parity check matrix and the Generator matrix. Determine the 'n' and 'k' values of the linear block code. Obtain the code vectors. Construct the standard array for the code and obtain the decoding circuit.	CO3	PO2	10
	c)	 A linear hamming code is described by the generator polynomial $g(D) = 1+D+D^3$. Determine the Generator and the Parity check matrix.	CO3	PO2	05
		OR			

	8	a)	The generator matrix for a (5, 1) Linear block code is given below. Obtain the parity check matrix and evaluate the syndrome for all five possible single error patterns. $G = [1 \ 1 \ 1 \ 1 \ 1]$	CO3	PO2	05	
		b)	A (15, 5) linear cyclic code has a generator polynomial $g(x) = 1+x+x^2+x^4+x^5+x^8+x^{10}$. draw the block diagram of the encoder and find the code polynomial for the message $D(X) = 1+X^2+X^4$ in systematic form. Is $V(X) = 1+X^4+X^6+X^8+X^{14}$ a code polynomial?	CO3	PO2	09	
		c)	For the (7,4) cyclic code, $D(x)=d_0+d_1X+d_2X^2+d_3X^3$ and $X^n+1 = X^7+1 = (1+X+X^3)(1+X+X^2+X^4)$. Using the generator polynomial $g(x) = 1+X+X^3$, find the code vectors for the message 1001 both in systematic and nonsystematic form	CO3	PO2	06	
			UNIT - V				
	9	a)	For the binary convolutional encoder (2, 1, 2) given below. Draw the state transition table, trellis diagram. Using the trellis structure. If the received vector is [11 11 10 01 10 01 11] decode the input sequence using Viterbi Decoding.	CO3	PO2	12	
		b)		CO3	PO2	08	
			OR				
	10	a)	For the (2,1,2) convolutional encoder, if the generator coefficients are $g^{(1)} = 111$ and $g^{(2)} = 101$. Draw the encoder block diagram and find the output sequence using Time and Transform domain approach	CO3	PO2	12	
		b)	For the (3, 2, 1) convolutional encoder, the generator coefficients are $g_1^{(1)} = 10$, $g_1^{(2)} = 01$, $g_1^{(3)} = 00$, $g_2^{(1)} = 11$, $g_2^{(2)} = 10$ and $g_3^{(2)} = 01$. Draw the encoder block diagram and obtain the codeword corresponding to the information sequences $d(1) = 010$ and $d(2) = 011$ using time and transform domain approach	CO3	PO2	08	
