

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

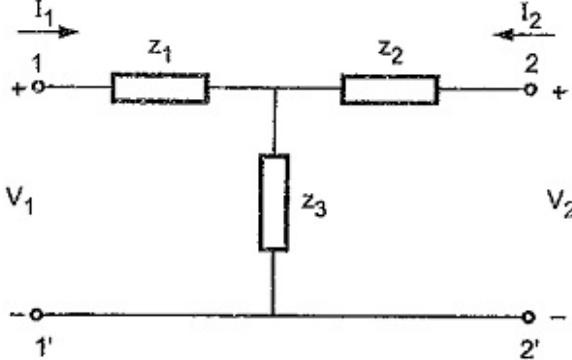
Programme: B.E.

Semester: VI

Branch: Electronics and Telecommunication Engineering

Duration: 3 hrs.

Course Code: 23ET6PCMWA


Max Marks: 100

Course: Microwaves and Antenna

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Derive the general solution of a transmission line using Telegrapher's equations. State assumptions for lossless and distortion less lines.	CO2	PO1	07
	b)	A 50Ω line is terminated with a load $Z_L = 25 + j50\Omega$. Find: i) Reflection coefficient ii) SWR iii) Return Loss	CO2	PO1	07
	c)	A short-circuited 75Ω lossless coaxial line is 0.1λ long. Compute the input impedance and comment on its nature (capacitive/inductive).	CO3	PO2	06
OR					
2	a)	Derive the input impedance expression of a transmission line and explain conditions for resonance for short and open circuit terminations.	CO2	PO1	07
	b)	A transmission line exhibits the equation $i(z,t) = 1.5 \cos(2\pi(2.4 \times 10^9 t) - \beta z)$ Determine: i) Frequency ii) Phase velocity (assume $\beta = 50$ rad/m) iii) Relative permittivity of the medium	CO2	PO1	07
	c)	A lossless open-wire transmission line at 3 GHz has length 3 cm and characteristic impedance of 60Ω . The load impedance is $30 + j20\Omega$. Compute: i) Reflection coefficient, ii) Input impedance, iii) VSWR	CO3	PO2	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - II					
3	a)	Derive the expression for the input impedance of a lossless transmission line terminated with any load. Discuss special cases of open- and short-circuited terminations.	CO2	PO1	07
	b)	A 75Ω coaxial line of length 2.5 cm is terminated with a load of $Z_L=25-j30\Omega$. The line operates at 2.4 GHz with relative permittivity $\epsilon_r=2.25$. Determine: i) The guide wavelength ii) The input impedance iii) The reflection coefficient at the input	CO2	PO1	07
	c)	Explain the Quarter-wave transformer. Derive the condition for perfect matching using it.	CO3	PO2	06
OR					
4	a)	A rectangular waveguide with $a = 5\text{cm}$, $b = 2.5\text{cm}$ operates in fundamental mode with an operating frequency of $f = 9\text{GHz}$. Calculate the cut-off frequency and group velocity of the wave inside the waveguide.	CO2	PO1	05
	b)	Use a Smith chart to determine the stub position and length for matching a $Z_L=100-j50\Omega$ load to a 50Ω line using a single-stub.	CO2	PO1	08
	c)	Consider a Teflon filled copper K band rectangular waveguide having dimensions $a = 1.07\text{cm}$ and $b = 0.43\text{cm}$. Find the cut-off frequencies of the first five propagating modes. The operating frequency is 15GHz	CO3	PO2	07
UNIT - III					
5	a)	Define S-matrix and derive its properties for a 3-port lossless reciprocal network.	CO2	PO1	07
	b)	Consider the network shown, find the Z-matrix. $Z_1 = 10\Omega$, $Z_2 = 20\Omega$, $Z_3 = 15\Omega$.	CO2	PO1	07
	c)	For the signal flow graph edges, apply the relevant decomposition rule to reduce them to a single branch in each case, except for the last case, which will have two surviving branches.	CO3	PO2	06

		OR			
6	a)	A T-junction divider has $Z_0=50 \Omega$ and delivers 10 W to each load $Z_L=60 \Omega$. Calculate reflection coefficients and reflected power.	CO2	PO1	07
	b)	Design a 3rd-order Butterworth low-pass filter with cutoff at 3 GHz. Show normalized element values and scaled implementation.	CO2	PO1	07
	c)	Consider the ABCD parameters of a 2-port network. Convert the parameters to Z-matrix $\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 2 & 50 \\ 0.01 & 1 \end{bmatrix}$	CO3	PO2	06
		UNIT - IV			
7	a)	Define and derive expressions for the following antenna parameters: i) Beam area ii) Directivity iii) Aperture efficiency	CO4	PO3,5,1 2	07
	b)	An antenna has a beamwidth of 25° in both principal planes. Calculate: i) Beam solid angle ii) Directivity (in linear scale and dBi) Assume isotropic radiator as reference.	CO4	PO3,5,1 2	07
	c)	Explain the field zones of an antenna. Derive expressions for electric field components in the far-field region for a $\lambda/2$ dipole.	CO4	PO3,5,1 2	06
		OR			
8	a)	Derive the expressions for electric and magnetic fields of a small loop (magnetic dipole) antenna. State assumptions and draw field pattern.	CO4	PO3,5,1 2	07
	b)	A parabolic dish antenna of diameter 2.4 m operates at 12 GHz. Calculate: i) Gain in dBi ii) Effective aperture Assume efficiency = 65%.	CO4	PO3,5,1 2	07

		c)	Define and derive the expression for effective height of a receiving antenna. How is it related to gain and effective aperture?	CO4	PO3,5,1 2	06
			UNIT - V			
	9	a)	Derive the array factor for a broadside linear array of 'n' isotropic elements with $\lambda/2$ spacing and equal amplitude. Sketch for 4 elements.	CO4	PO3,5,1 2	07
		b)	Two isotropic sources spaced λ apart are fed with equal magnitude and a phase difference of 120° . Derive the resultant field expression and plot.	CO4	PO3,5,1 2	07
		c)	Define pattern multiplication. Using an example of a 3-element linear array, explain its effect on main lobe and side lobes.	CO4	PO3,5,1 2	06
			OR			
	10	a)	Derive expressions for radiation intensity and beamwidth for an end-fire array of two $\lambda/2$ spaced isotropic elements fed with 180° phase shift.	CO4	PO3,5,1 2	07
		b)	Differentiate isotropic and non-isotropic antennas. Explain how non-isotropic sources affect array performance and beam shaping.	CO4	PO3,5,1 2	07
		c)	Prove the power theorem for antenna arrays. Show how total radiated power is conserved using superposition principle.	CO4	PO3,5,1 2	06
