

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Electronics and Telecommunication Engineering

Duration: 3 hrs.

Course Code: 19ET6PCMWR

Max Marks: 100

Course: Microwave and Radar

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Derive the input impedance of a Quarter-Wave Transformer and discuss its use in impedance matching.	CO2	PO1	10
		b)	With neat diagrams, explain the construction and radiation patterns of (i) Horn antenna, and (ii) Parabolic reflector antenna.	CO2	PO1	10
OR						
	2	a)	Compare coaxial line, waveguide, and microstrip transmission line in terms of structure, losses, and frequency applicability.	CO2	PO1	10
		b)	Explain the working of a rectangular waveguide. Derive expressions for cutoff frequency, phase velocity, and characteristic impedance.	CO2	PO1	10
UNIT - II						
	3	a)	Define the Scattering Matrix (S-Matrix). Derive the S-Matrix for a 3-port lossless, matched Magic-Tee.	CO3	PO2	10
		b)	With necessary expressions, explain the concept of matching using Binomial and Chebyshev multisection transformers.	CO3	PO2	10
OR						
	4	a)	What is a signal flow graph? Use Mason's gain formula to determine the overall gain of a given microwave network.	CO3	PO2	10
		b)	Derive the condition for minimum reflection in a tapered transmission line. Explain briefly how it improves impedance matching.	CO3	PO2	10

UNIT - III					
5	a)	Explain the structure and S-matrix of (i) Wilkinson Power Divider, and (ii) 90° Hybrid Coupler.	CO3	PO2	10
	b)	With neat sketches, explain the design steps of a microwave bandpass filter using the insertion loss method.	CO4	PO3	10
OR					
6	a)	Derive expressions for two-port power gains: available gain, transducer gain, and operating power gain for RF amplifiers.	CO3	PO2	10
	b)	With neat block diagram, explain the working principle of a super-heterodyne receiver and the role of a mixer in it.	CO4	PO3	10
UNIT - IV					
7	a)	Derive the Radar Range Equation and explain how different parameters affect detection range.	CO3	PO2	10
	b)	Explain the operation of an MTI Radar and derive the expression for MTI improvement factor.	CO4	PO3	10
OR					
8	a)	Compare CW Radar and FMCW Radar. Derive the expression for range in FMCW radar with triangular modulation.	CO3	PO2	10
	b)	Describe the working principle of Monopulse Radar. How is angular resolution achieved in tracking radar?	CO4	PO3	10
UNIT - V					
9	a)	Explain Pulse Compression and Synthetic Aperture Radar (SAR) techniques in detail with advantages.	CO3	PO2	10
	b)	Define the Radar Ambiguity Function. Derive and explain its significance in radar signal design.	CO4	PO3	10
OR					
10	a)	Explain how the probability of false alarm (PFA) and detection (PD) affect radar system performance. Illustrate with Swerling models.	CO3	PO2	10
	b)	What is Ground Penetrating Radar (GPR)? Discuss its working, applications, and the challenges related to EM hazards.	CO4	PO3	10
