

U.S.N.							
--------	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

Programme: B.E.

Semester: VI

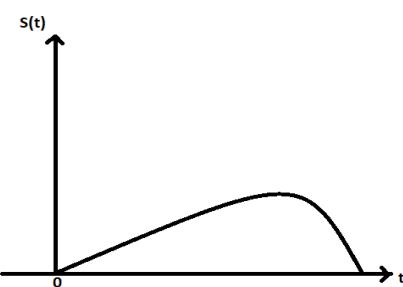
Branch: Electronics & Telecommunication Engineering

Duration: 3 hrs.

Course Code: 19ET6PCMWR

Max Marks: 100

Course: Microwaves & Radar


Date: 10.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Design a quarter wave transformer to match a load of 200Ω to a source resistance of 500Ω operating at a frequency of 200MHz.	CO2	PO1	05
	b)	Match a complex load impedance of $Z_L=200+j200 \Omega$ to 100Ω using quarter wave line?	CO3	PO2	06
	c)	Determine the length ρ of the horn, H plane aperture and flare angles Θ_E and Θ_H of a pyramidal horn for which E plane aperture is 10λ . The horn is fed with a rectangular waveguide of TE_{10} mode. Let $\delta = 0.2\lambda$ in E-plane and 0.375λ in H plane. Calculate beam width and directivity.	CO2	PO1	09
UNIT - II					
2	a)	A four-port network has the scattering matrix as follows: $\begin{bmatrix} 0.178 e^{j90^\circ} & 0.6 e^{j45^\circ} & 0.4 e^{j45^\circ} & 0 \\ 0.6 e^{j45^\circ} & 0 & 0 & 0.3 e^{-j45^\circ} \\ 0.4 e^{j45^\circ} & 0 & 0 & 0.5 e^{-j45^\circ} \\ 0 & 0.3 e^{-j45^\circ} & 0.5 e^{-j45^\circ} & 0 \end{bmatrix}$ i. Is the network lossless? ii. Is this network reciprocal? iii. What is the return loss at port 1 when all other ports are terminated with matched loads?	CO3	PO2	10
	b)	Design an L-section matching network to match a series RC load with an impedance $Z_L = 200-j100\Omega$ to a 100Ω line at a frequency of 500 MHz.	CO3	PO3	10
OR					
3	a)	Design a three-section binomial transformer to match a 200Ω load to a 100Ω line and calculate the bandwidth for $\Gamma_m=0.05$.	CO3	PO3	10
	b)	Design a three-section Chebyshev transformer to match a 200Ω line with $\Gamma_m=0.05$.	CO3	PO3	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III					
4	a)	A lossless T-junction power divider has source impedance of 50Ω . Find the output powers are in the ratio 1:1. Compute the reflection co-efficients seen looking into the output ports. Fig 4a	CO3	PO3	08
	b)	Design an equal split Wilkinson power divider for a 50Ω system impedance at frequency f_0 .	CO4	PO3	08
	c)	A 20 dBm power source is connected to the input of a directional coupler having a coupling factor of 20 dB, a directivity of 30 dB, and an insertion loss of 0.5 dB. If all ports are matched, find the output powers (in dBm) at the through, coupled, and isolated ports..	CO3	PO2	04
OR					
5	a)	Conduct even-odd mode analysis of the Ring Hybrid.	CO1		07
	b)	Design a maximally flat LPF with a cut-off frequency of 2 GHz, impedance of 50Ω and at least 15dB insertion loss at 3 GHz. Compute and plot the amplitude response and plot the amplitude response and group delay for $f=0$ to 4 GHz and compare with an equal ripple (3.0 dB ripple) and linear phase filter having the same order.	CO3	PO3	08
	c)	Design the width of region for an Si Read diode for operation at 10GHz.	CO3	PO3	05
UNIT - IV					
6	a)	Derive RADAR Range Equation.	CO1		08
	b)	The speed of a missile toward a radar is 500 m/s. Assume an X-band radar operating at a frequency of 10 GHz. i) Calculate the exact Doppler frequency at the receiver. ii) Calculate the receiver Doppler frequency assuming $v_r=c$.	CO2	PO1	06
	c)	Consider a low PRF pulsed radar with a PRF of 1500 pps and a bandwidth of 0.5 MHz. Calculate the maximum unambiguous range, pulse width, range resolution, and the duty factor.	CO2	PO1	06
UNIT - V					
7	a)	Consider the pulse shape as shown. Obtain the impulse response of the filter matched to this pulse.	CO3	PO2	08

	b)	If an aircraft is present in a certain area, a radar correctly registers its presence with probability 0.90. if it is not present, the radar falsely registers an aircraft presence with probability 0.2. we assume that an aircraft is present with probability 0.1. What is the probability of false alarm (a false indication of aircraft presence), and the probability of missed detection (nothing registers, even though an aircraft is present)? What is the probability that an aircraft is present given that the radar registers a presence?	CO2	PO1	06
	c)	Differentiate between SW1, SW2 and SW3, SW4 Swerling models.	CO2	PO1	06

B.M.S.C.E. - EVEN SEM 2022-23