

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Electronics and Telecommunication Engineering

Duration: 3 hrs.

Course Code: 22ET6PCTLA

Max Marks: 100

Course: Transmission Lines and Antennas

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I		
			<i>CO</i>	<i>PO</i>	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Derive the general solution of voltage and current on a transmission line. Explain the significance of characteristic impedance and propagation constant.	<i>CO2</i>	<i>PO1</i>
		b)	A transmission line with characteristic impedance $Z_0=75 \Omega$ is terminated with a load $Z_L = (100+j50) \Omega$. Find the reflection coefficient, SWR, and input impedance if the line length is 0.3λ .	<i>CO2</i>	<i>PO1</i>
OR					
	2	a)	Define a distortionless line. Derive the condition for distortionless transmission on a lossy line.	<i>CO2</i>	<i>PO1</i>
		b)	Explain the effect of short- and open-circuit terminations on standing wave formation. Calculate reflection loss and insertion loss for a line with $SWR = 3$.	<i>CO2</i>	<i>PO1</i>
			UNIT - II		
	3	a)	Describe how a Smith Chart is used for single-stub matching. Illustrate with an example of matching a $Z_L = (80-j40) \Omega$ to a $Z_0=50 \Omega$.	<i>CO3</i>	<i>PO2</i>
		b)	A quarter-wave transformer is used to match a 100Ω load to a 50Ω line. Find the characteristic impedance of the transformer and input impedance at the junction.	<i>CO2</i>	<i>PO1</i>
OR					
	4	a)	Derive the expression for the input impedance of an open-circuited and short-circuited lossless transmission line of length l .	<i>CO3</i>	<i>PO2</i>
		b)	Using the Smith chart, explain how to locate maximum voltage and minimum current points on a mismatched line.	<i>CO2</i>	<i>PO1</i>

UNIT - III						
5	a)	Define and explain radiation intensity, directivity, gain, and antenna efficiency.	<i>CO1</i>	-	10	
	b)	Derive the array factor for a broadside linear array of n-isotropic elements with equal amplitude and spacing $\lambda/2$. Sketch for 4 elements.	<i>CO2</i>	<i>PO1</i>	10	
OR						
6	a)	Explain the principle of pattern multiplication with an example of two isotropic sources spaced λ apart.	<i>CO1</i>	-	10	
	b)	Describe the different field zones of an antenna and their significance in antenna analysis.	<i>CO2</i>	<i>PO1</i>	10	
UNIT - IV						
7	a)	Derive the radiation resistance of a half-wave dipole antenna.	<i>CO2</i>	<i>PO1</i>	10	
	b)	Compare the far-field radiation patterns of a small loop and a short dipole antenna.	<i>CO2</i>	<i>PO1</i>	10	
OR						
8	a)	Derive expressions for far-field components of a circular loop antenna.	<i>CO2</i>	<i>PO1</i>	10	
	b)	Explain the concept of directivity for a circular loop antenna. How is it different from a dipole?	<i>CO2</i>	<i>PO1</i>	10	
UNIT - V						
9	a)	Discuss Rumsey's Principle. How does it apply to frequency-independent antennas?	<i>CO2</i>	<i>PO1</i>	10	
	b)	Explain the working principle of a planar log-spiral antenna. What are its advantages?	<i>CO1</i>	-	10	
OR						
10	a)	Compare biconical, bow-tie, and log-periodic antennas in terms of frequency response and applications.	<i>CO2</i>	<i>PO1</i>	10	
	b)	What is the significance of using directional biconicals in broadband communication? Describe with a neat sketch.	<i>CO1</i>	-	10	
