

B.M.S. College of Engineering, Bengaluru-560019

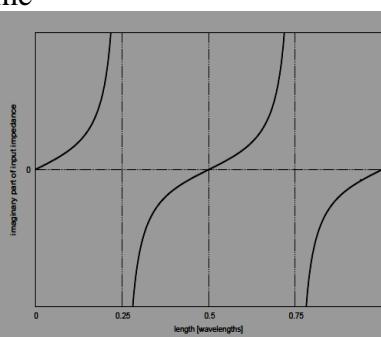
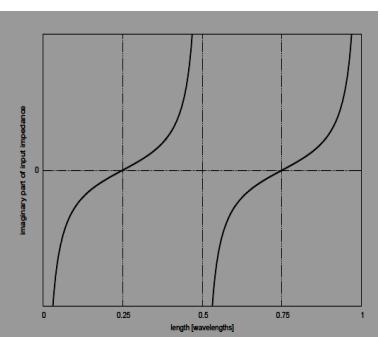
Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

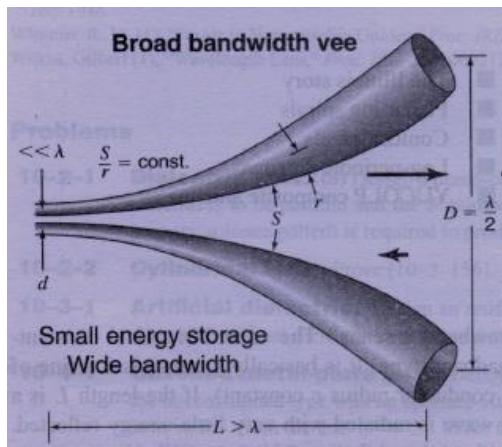
Semester: VI

Branch: Electronics & Telecommunication Engineering



Duration: 3 hrs.

Course Code: 22ET6PCTLA

Max Marks: 100


Course: Transmission Lines and Antennas

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
1	a)	Explain the different types of distortions in a transmission lines. Derive the condition for a distortionless line.	CO2	PO1	06			
	b)	A generator of 1 Volt,1000Hz supplies power to a 100 km open wire line terminated in Z_0 having the following parameters: $R=10\Omega/\text{Km}$, $G=0.8 \mu\text{v}/\text{Km}$, $L=0.004 \text{H}/\text{Km}$ and $C=0.008 \mu\text{F}/\text{Km}$. Calculate $Z_0, \alpha, \beta, \gamma, \lambda$ of the line.	CO2	PO1	06			
	c)	Measurements carried out on a certain distortionless line at an angular frequency of 1500 rads/sec, yielded the following values: $G=2.25\mu\text{v}/\text{Km}$, $C= 8\text{nF}/\text{Km}$ and $Z_0=800\Omega$.Determine R , L , γ , V_p .	CO2	PO1	08			
OR								
2	a)	Derive expression for reflection factor and reflection loss.	CO2	PO1	06			
	b)	Measurements carried out on a telephone cable has shown negligible values of inductance and conductance. The attenuation constant was found to be 0.05 nepers/km, the phase velocity to be 80000 km/sec and characteristic impedance to be $400 \angle -45^\circ \Omega$. Determine β , γ , ω and the values of R and C of the telephone cable.	CO2	PO1	06			
	c)	The Characteristic impedance of a transmission line is 50Ω .Input impedance of the open circuited line is $(100+ j 150)$.when the transmission line a short circuited, what will be the value of impedance.	CO2	PO1	08			
UNIT - II								
3	a)	Identify the below given plots and also derive expression for the same	CO2	PO1	08			

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	A 50 MHz open-wire line is to be built of copper wire of diameter 3.264mm and to have $R_0=425\Omega$. Find the desired spacing 'd'.	CO2	PO1	04
	c)	A load impedance of $Z_L=(60-j80)\Omega$ is required to be matched to a 50Ω co-axial line, by using a short circuited stub of length 'l' located at a distance 'd' from the load. The wavelength of operation is 1 meter. Using Smith chart, find 'd' and 'l'.	CO3	PO2	08
		UNIT - III			
4	a)	Show that the directivity of a short dipole is 1.5 and for $\lambda/2$ antenna is 1.64	CO2	PO1	06
	b)	Find the directivity of the following intensity patterns. (i)Unidirectional cosine patterns, (ii) Bidirectional cosine patterns,(iii) Unidirectional sine patterns and (iv) Bidirectional sine patterns	CO2	PO1	10
	c)	Obtain relationship between A_{em} and d of an antenna.	CO2	PO1	04
		OR			
5	a)	Derive Friis transmission formula.	CO2	PO1	06
	b)	Complete the field pattern and find BWFN and HPBW for a linear uniform array of 6 isotropic point sources spaced $\lambda/2$ distance apart.The power is applied with equal amplitude and in phase.	CO2	PO1	10
	c)	Find the effective aperture of an isotropic antenna given D and A_{em} of short dipole as 1.5 and $(3/8\pi)\lambda^2$ respectively.	CO2	PO1	04
		UNIT - IV			
6	a)	Derive expression for electric fields due to current element of a short dipole.	CO2	PO1	06
	b)	Approximately how far away from a 50kHz cycle circuit would you find the radiation field comparable to the inductor's field?	CO2	PO1	04
	c)	Prove that the radiation resistance of $\lambda/2$ dipole is 73Ω .	CO2	PO1	10
		UNIT - V			
7	a)	What is Rumsey's principle? Explain in detail the log-spiral antenna.	CO1		08
	b)	Briefly explain how,an infinite biconical antenna is analogous to an infinite uniform transmission line.	CO1		08
	c)	If $d=4\text{mm}$ and $D=100\text{mm}$ in the below given figure, find bandwidth.	CO2	PO1	04
