

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Electronics & Telecommunication Engineering

Duration: 3 hrs.

Course Code: 22ET6PCVLS

Max Marks: 100

Course: Fundamentals of VLSI

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a) Define Moore's first law with an appropriate graph and thereby explain its implication.	CO1	PO1	04
		b) With neat sketches, analyze the nMOS fabrication technique. Clearly describe the various masking operations performed.	CO1	PO1	08
		c) Design and implement the logic function, $Y = (A+B).C$ using minimum number of transistors. Use CMOS technology for implementation and thereby sketch the stick diagram.	CO1	PO1	08
OR					
2	a)	Compare CMOS and Bipolar technologies.	CO1	PO1	04
	b)	Analyze with relevant diagrams and masking operations, the CMOS twin tub fabrication process.	CO1	PO1	08
	c)	Using minimum number of transistors, design the logic function $Y = (A+BC)$ and thereby implement the same using monochrome layout diagram.	CO1	PO1	08
UNIT - II					
3	a)	Design and analyze the operation of a Cascode Voltage Switch Logic 2-input AND / NAND gate.	CO2	PO2	06
	b)	Design a 3-input OR gate using C ² MOS logic and analyze its working principle. Also sketch the stick diagram for the circuit.	CO2	PO2	08
	c)	Design a 4:1 Mux using Transmission gate and analyze its working principle. Also sketch the stick diagram for a 2:1 Mux circuit.	CO2	PO2	06
OR					
4	a)	Draw and explain the operation of 2- input NAND gate in Bi-CMOS logic	CO2	PO2	10
	b)	What is a pass transistor? Design a pass transistor network that implements the function $F = A B C + A B' C' + A' B' C + A' B C'$	CO2	PO2	10

UNIT - III					
5	a)	Prove that the total time constant is 0.7 ns for a CMOS inverter and 0.5 ns for an nMOS inverter. Use appropriate terminologies and equivalent circuits for your analysis.	CO3	PO2	10
	b)	Determine the total capacitance between the following area and substrate in the figure given below. Consider $5\mu\text{m}$ technology for your calculations.	CO3	PO2	10
OR					
6	a)	Determine the expressions for rise and fall times of a CMOS inverter	CO3	PO2	10
	b)	Design a 4-bit bidirectional shifter.	CO3	PO2	08
UNIT - IV					
7	a)	Design and implement a 4×4 Barrel shifter circuit and also analyze its advantages over a traditional crossbar switch. Substantiate your reply with diagrams of both the switches.	CO3	PO2	10
	b)	Implement and analyze the working of a 24 – bit Carry skip adder. Also explain the optimization technique used for the carry skip adder.	CO3	PO2	10
OR					
8	a)	Design and analyze a 4 – bit adder circuit using the principle of Manchester carry chain. Also write the stick diagram of a single bit Manchester carry chain.	CO3	PO2	10
	b)	Design and analyze with relevant diagram a Serial parallel multiplier.	CO3	PO2	10
UNIT - V					
9	a)	Analyze the following practical design issues in VLSI testing environment: <ol style="list-style-type: none"> Controllability and Observability Self – Reset Logic 	CO4	PO2	10
	b)	Implement and analyze the following memory cells. Sketch the equivalent stick diagrams. <ol style="list-style-type: none"> 3T Dynamic RAM cell 1T memory cell 	CO4	PO2	10
OR					
10	a)	Briefly explain Ground rules for successful VLSI design	CO4	PO1	08
	b)	Draw the CMOS circuit and stick diagram for pseudo-static memory cell	CO4	PO1	12