

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Branch: Electronics & Telecommunication Engineering

Course Code: 22ET6PCVLS

Course: Fundamentals of VLSI

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I		
			CO	PO	Marks
	1 a)	Draw and explain the DC characteristics of CMOS inverter	<i>CO1</i>	<i>PO1</i>	08
	b)	With neat sketches, explain the fabrication process of nMOS Transistor	<i>CO1</i>	<i>PO1</i>	08
	c)	Design a CMOS diagram for the function $Y = \overline{(A + B)C}$ and hence describe the same using stick diagram	<i>CO1</i>	<i>PO1</i>	04
		OR			
	2 a)	With neat sketches, explain the Twin-tub fabrication process of CMOS Transistor	<i>CO1</i>	<i>PO1</i>	08
	b)	Draw and explain the DC characteristics of nMOS inverter	<i>CO1</i>	<i>PO1</i>	08
	c)	Design a CMOS diagram for the function $Y = \overline{(A + B)(C + D)}$ and hence describe the same using stick diagram	<i>CO1</i>	<i>PO1</i>	04
			UNIT - II		
	3 a)	Design 4:1 multiplexer using transmission gates and also write the stick diagram for 2:1 mux.	<i>CO2</i>	<i>PO2</i>	08
	b)	Draw and explain the operation of 2- input NAND gate in Bi-CMOS logic	<i>CO2</i>	<i>PO2</i>	06
	c)	What is a pass transistor? Design a pass transistor network that implements the function $F = A B C + A B' C' + A' B' C + A' B C'$	<i>CO2</i>	<i>PO2</i>	06
		OR			
	4 a)	Design a circuit for the expression $Y = \overline{A + BC}$ through CVSL technology and explain the advantages of CVSL technology.	<i>CO3</i>	<i>PO3</i>	10
	b)	Design a RS latch dynamic CMOS circuit and analyze its working principle and thereby sketch its stick diagram.	<i>CO3</i>	<i>PO3</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III					
5	a)	Determine the expressions for rise and fall times of a CMOS inverter	CO3	PO2	06
	b)	Design a 4-bit bidirectional shifter	CO3	PO2	08
	c)	Explain Switch logic and Gate logic with an example	CO3	PO2	06
OR					
6	a)	Prove that the total time constant is 0.7 ns for a CMOS inverter and 0.5 ns for an nMOS inverter. Use appropriate terminologies and equivalent circuits for your analysis.	CO3	PO2	10
	b)	Two nMOS inverters are cascaded as shown in Fig below. Calculate the delay in terms of τ . $C_1 = 4\lambda C_g$ at the output of first inverter, hence analyze: (i) The delay if $\tau = 0.4$ ns (ii) If due to connecting wires, the stray capacitance increases by $4\lambda C_g$, what is the delay time?	CO3	PO4	10
UNIT - IV					
7	a)	Design 1-bit adder and draw its circuit using CMOS logic	CO3	PO2	06
	b)	List the important guidelines to design a system	CO3	PO2	06
	c)	With a neat circuit diagram explain the operation of 4-bit Wallace tree multiplier	CO3	PO2	08
OR					
8	a)	Design and analyze with relevant diagrams a Manchester carry chain adder and also write the stick diagram for a 1-bit Manchester chain.	CO3	PO2	10
	b)	With a neat circuit diagram explain the operation of 4-bit Booth multiplier	CO3	PO2	10
UNIT - V					
9	a)	Briefly explain Ground rules for successful VLSI design	CO4	PO1	06
	b)	Define Controllability and Observability	CO4	PO1	06
	c)	Draw the CMOS circuit and stick diagram for pseudo-static memory cell	CO4	PO1	08
OR					
10	a)	Analyze the following practical design issues in VLSI testing environment: i. Gated clocks ii. Self – Reset Logic	CO4	PO2	10

		iii. Use of multiplexers			
	b)	Implement and analyze the following memory cells. Sketch the equivalent stick diagrams. i. 3T Dynamic RAM cell ii. Pseudo static memory cell	CO4	PO2	10

B.M.S.C.E. - EVEN SEM 2024-25