

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

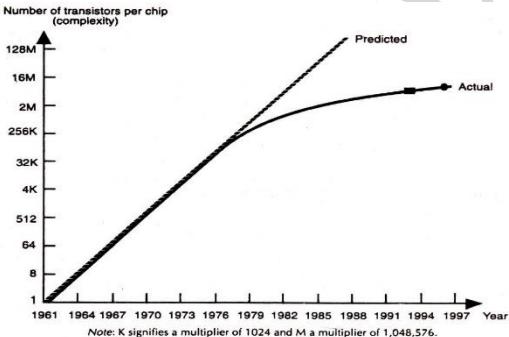
Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

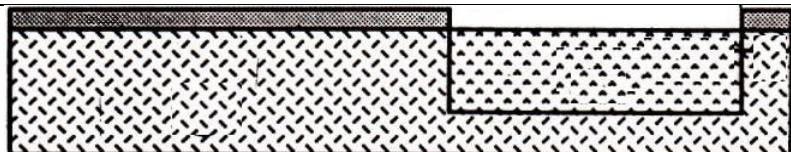
Programme: B.E.

Semester: VI

Branch: Electronics & Telecommunication Engineering


Duration: 3 hrs.

Course Code: 22ET6PCVLS


Max Marks: 100

Course: Fundamentals of VLSI

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Identify the graph given below in <i>Fig.1.1</i> and analyze its implications.	COI	POI	05
		<p><i>Fig.1.1</i></p>			
	b)	Analyze with relevant diagrams and masking operations, the CMOS twin tub fabrication process.	COI	POI	05
	c)	Design and implement the expression $Y = \overline{(A + B)C}$ using minimum number of transistors. Use CMOS technology for implementation and thereby sketch: <ol style="list-style-type: none"> Monochrome layout diagram Stick diagram 	COI	POI	10
		OR			
2	a)	Compare CMOS and Bipolar technologies.	COI	POI	05
	b)	Considering the initial process of fabrication given below in <i>Fig.2.1</i> , complete the fabrication process.	COI	POI	05

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

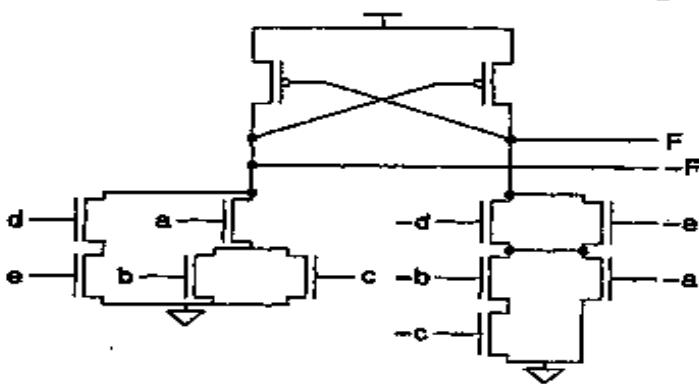
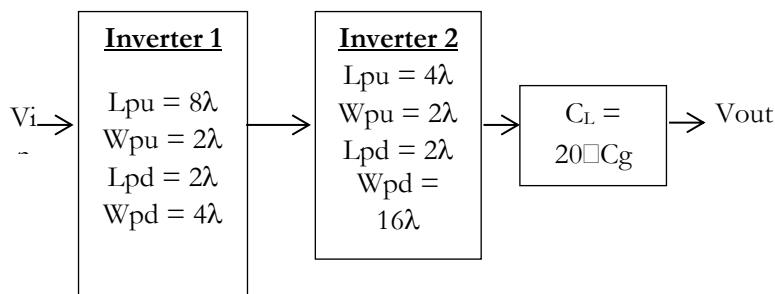


Fig.2.1

	c)	Design and implement the expression $Y = P + QR$ Use CMOS technology for implementation and thereby sketch: i. Monochrome layout diagram ii. Stick diagram	CO1	PO1	10
--	----	--	-----	-----	----

UNIT - II

3	a)	Interpret the output of the following circuit in <i>Fig. 3.1</i> and write the output expression and its stick diagram.	CO2	PO1	05
<i>Fig. 3.1</i>					


Fig. 3.1

	b)	Design a 4:1 Mux using Transmission gate and analyze its working principle. Also sketch the stick diagram for a 2:1 Mux circuit.	CO2	PO1	05
UNIT - III					

4	a)	Derive the expressions for rise – time estimation and fall – time estimation of a CMOS inverter with relevant terminologies.	CO3	PO2	05
UNIT - III					
	b)	Analyze the basic architectural guidelines considered in VLSI design.	CO3	PO2	05

c) Two nMOS inverters are cascaded as shown in Fig4.1 below. Calculate the delay in terms of τ . If $C_1 = 8\Box C_g$ at the output of first inverter, determine:
(i) The delay if $\tau = 0.6$ ns

(ii) If due to connecting wires, the stray capacitance increases by $8\lambda C_g$, what is the delay time?
 (iii) Implement the stick diagram of the nMOS inverter.

Fig 4.1

UNIT - IV

5	a)	Design a 4 – bit Combinational shifter and briefly analyze its functioning with an appropriate truth table. Also write the stick diagram for 1 – bit inverting register.	CO3	PO2	05
	b)	Implement and analyze a 4 – bit serial – parallel multiplier circuit.	CO3	PO2	05
	c)	Derive an expression for the computation time 'T' for the Carry Select Adder and thereby derive the minimum T for a 128 bit carry select adder, with 16ns delay through every adder cell and 2ns delay through the multiplexer. Determine number of blocks and number of adder cells in each block for achieving minimum T.	CO3	PO2	10

OR

6	a)	Design and analyze the operation of a 4 – bit Barrel shifter.	CO3	PO2	05
	b)	Implement and analyze the working of a 24 – bit Carry skip adder. Also derive the optimization technique used for the carry skip adder.	CO3	PO2	05
	c)	Consider the example of $(126)_{10} \times (127)_{10}$ and thereby implement the multiplication using: i. Traditional Booth multiplier ii. Modified Booth multiplier Complete the process of multiplication using appropriate encoding tables for both the cases.	CO3	PO2	10

UNIT - V

7	a)	Identify the memory logic in the circuit given below in Fig.7.1 and thereby analyze its working principle.	CO4	PO4	05
---	----	---	-----	-----	-----------

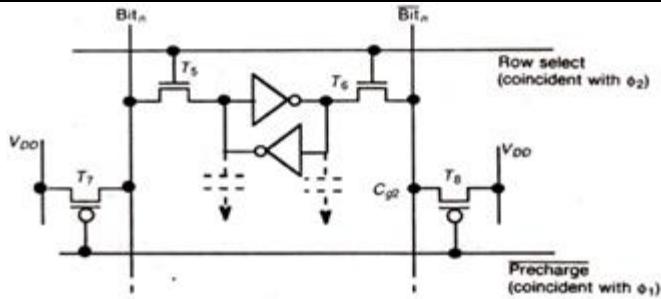


Fig.7.1

b) Analyze the practical design issues of testability with respect to the following:

- i. Controllability and Observability
- ii. Gated Clocks

c) For the circuit given below in *Fig.7.2* below consider a

- SA1 at line 1 and thereby implement the test vectors
- SA1 at line 8 and thereby implement the test vectors

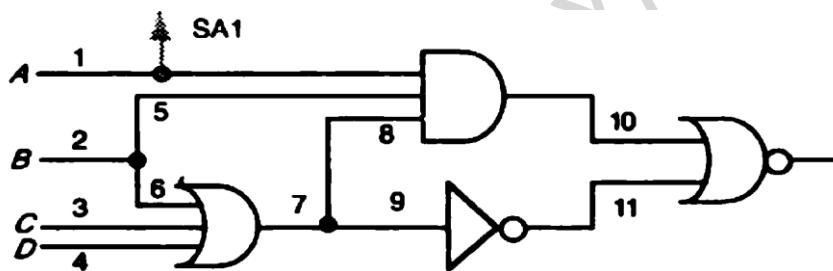


Fig. 7.2
