

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January 2024 Semester End Main Examinations

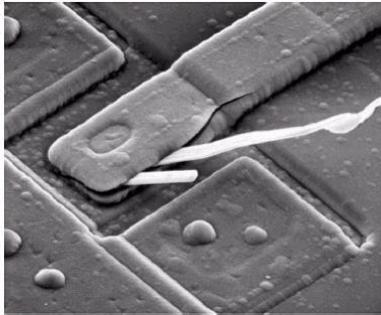
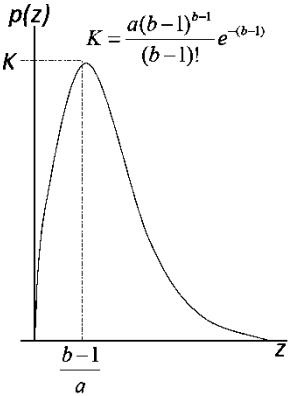
Programme: B.E.

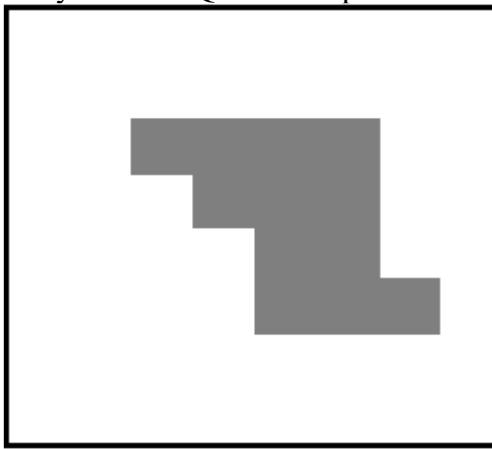
Semester: VII

Branch: ES – Cluster Elective

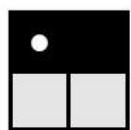
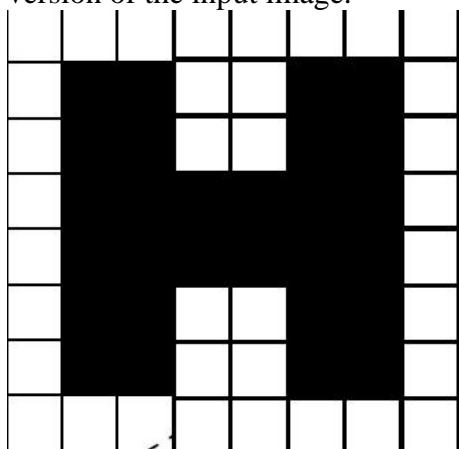
Duration: 3 hrs.

Course Code: 19ET7CE2IP



Max Marks: 100


Course: Image Processing

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.



UNIT - I			CO	PO	Marks
1	a)	Define the term 'Image'. Analyze the components of an Image Processing system with relevant diagram.	CO1		06
	b)	With a neat sketch, explain microdensitometer image acquisition system.	CO1		06
	c)	Consider the image segment shown below: (i) Let $V = \{4, 5, 6\}$ and compute the length of the shortest 4,8 and m - path between p and q. If a particular path does not exist between these two points, explain why? (ii) Repeat the above problem considering $V = \{5, 6, 7\}$ $ \begin{array}{cccc} 3 & 4 & 6 & 6 (q) \\ 6 & 6 & 7 & 5 \\ 5 & 4 & 4 & 7 \\ (p) 6 & 7 & 7 & 4 \end{array} $	CO2	PO1	08
UNIT - II					
2	a)	Given an image of size 3X3 as shown below, determine the output image $g(x,y)$ using logarithmic transformation $g(x,y) = C \log_{10} (1 + f(x,y))$ by choosing : (i) $C = 2$ and (ii) $C = L / \log_{10}(1+L)$ $f(x,y) = \begin{bmatrix} 132 & 209 & 178 \\ 255 & 29 & 187 \\ 69 & 108 & 222 \end{bmatrix}$	CO2	PO1	06
	b)	Explain the process of frequency domain filtering with a neat block diagram.	CO1		06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	With appropriate diagram, derive the expression for a filter developed on the basis of Illuminance-Reflectance model.	CO2	PO1	08																
		OR																			
3	a)	For the input image given below apply a suitable Gaussian filter to obtain the output image and comment on the output obtained. Also explain the various properties of Gaussian filter.	CO3	PO2	06																
		<div style="display: flex; justify-content: space-around; align-items: center;"> <div style="text-align: center;"> <p>Original Image</p> </div> <div style="text-align: center;"> <p>Output Image</p> </div> </div>																			
	b)	Analyze the type of image enhancement to be used with relevant graphs for the following cases: <ol style="list-style-type: none"> Gamma correction and contrast manipulation of an image Highlighting a specific range of gray levels in an image 	CO2	PO1	06																
	c)	The Histogram of an 8 – level image is as shown below. Analyze and sketch the Histogram of Equalized image and comment on the output image. <table style="margin-left: auto; margin-right: auto;"> <tr><td>8</td><td>8</td><td>8</td><td>8</td></tr> <tr><td>6</td><td>8</td><td>9</td><td>8</td></tr> <tr><td>6</td><td>9</td><td>9</td><td>9</td></tr> <tr><td>6</td><td>8</td><td>9</td><td>8</td></tr> </table>	8	8	8	8	6	8	9	8	6	9	9	9	6	8	9	8	CO2	PO1	08
8	8	8	8																		
6	8	9	8																		
6	9	9	9																		
6	8	9	8																		
		UNIT - III																			
4	a)	For the noise model given below, write the PDF expression, the mean and variance of the PDF. <div style="text-align: center; margin-top: 10px;"> $p(z) = K \frac{a(b-1)^{b-1}}{(b-1)!} e^{-(b-1)}$ </div>	CO2	PO1	06																
	b)	With relevant terminologies and diagram, derive the expression for an Image restoration/degradation model. Also derive the expression for a simple inverse filter with relevant comments about its working principle.	CO1		06																

	c)	For the image given below apply the following filters and comment on the output obtained. i. Median filter of size 3 X 3 ii. Mid-point filter with respect to marked pixel iii. Arithmetic mean filter encompassing sub-image of 3 X 3 with a + shape of the mask	CO2	PO1	08
		$\begin{matrix} 255 & 121 & 99 \\ 52 & 0 & 102 \\ 155 & 19 & 69 \end{matrix}$			
		UNIT - IV			
5	a)	Define the following: i. Radiance ii. Luminance iii. Brightness iv. Hue v. Saturation vi. Tristimulus values	CO1		06
	b)	Explain the two different methods of color image quantization with relevant equations and examples.	CO1		06
	c)	Perform RGB to HSI conversion for the RGB color image given below: $\begin{bmatrix} 100,100,100 & 150,0,0 & 0,150,0 \\ 255,0,0 & 255,255,255 & 0,0,0 \\ 100,150,200 & 0,0,255 & 100,200,150 \end{bmatrix}$	CO2	PO1	08
		OR			
6	a)	Analyze briefly the two color filter methodologies used in color image processing with appropriate block diagrams.	CO2	PO1	10
	b)	Analyze the CIE Chromaticity Diagram. Write the equation for conversion of the tristimulus values to RGB values and vice-versa.	CO2	PO1	10
		UNIT - V			
7	a)	Apply split and merge technique to segment the image shown below and thereby write its Quadtree representation.	CO4	PO4	10

	b)	The input image and structuring element are given below. Find the eroded version of the input image.		CO4	PO4	10

B.M.S.C.E. - ODD SEM 2023-24