

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2023 Semester End Main Examinations

Programme: B.E.

Semester: VII

Branch: ES – Cluster Elective

Duration: 3 hrs.

Course Code: 19ET7CE2IP

Max Marks: 100

Course: Image Processing

Date: 28.02.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1 a) Define the term 'Image'. Analyze the process of sampling and quantization of an image with relevant diagrams. **06**

b) Explain any two image file formats with appropriate file format diagrams. **04**

c) Consider the image segment shown below: **10**

(i) Let $V = \{0, 1, 2\}$ and compute the length of the shortest 4,8 and m - path between p and q . If a particular path does not exist between these two points, explain why?

(ii) Repeat the above problem considering $V = \{1, 2, 3\}$

3	4	2	1	(q)
2	2	1	3	
1	0	0	2	
(p)	1	2	1	0

UNIT - II

2 a) Given an image of size 3X3 as shown below, determine the output image $g(x,y)$ using logarithmic transformation $g(x,y) = C \log_{10} (1 + f(x,y))$ by choosing : (i) $C = 2$ and (ii) $C = L / \log_{10} (1+L)$ **06**

$$f(x,y) = \begin{bmatrix} 132 & 209 & 178 \\ 255 & 29 & 187 \\ 69 & 108 & 222 \end{bmatrix}$$

b) Explain the process of frequency domain filtering with a neat block diagram. **06**

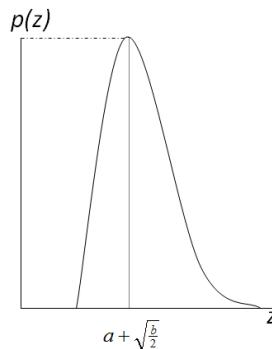
c) With appropriate diagram, derive the expression for a filter developed on the basis of Illuminance-Reflectance model. **08**

OR

3 a) For the input image given below in **Fig. 3.1** apply a suitable Gaussian filter to obtain the output image and comment on the output obtained. Also explain the various properties of Gaussian filter. **06**

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

Fig. 3.1


b) Analyze the type of image enhancement to be used with relevant graphs for the following cases: 06
 Gamma correction and contrast manipulation of an image
 Highlighting a specific range of gray levels in an image

c) The Histogram of an 8 – level image is as shown below. Analyze and sketch the Histogram of Equalized image and comment on the output image. 08

8	8	8	8
6	8	9	8
6	9	9	9
6	8	9	8

UNIT - III

4 a) Identify the noise model in **Fig. 4.1** and thereby write its PDF, mean and variance parameters. Also describe its salient features. 06

Fig. 4.1

b) Explain with neat block diagram and equations, the image restoration/degradation model. 06

c) Prove that median filter is an effective tool to overcome Salt and Pepper noise. Consider the example of a 3X5 image for your analysis. 08

UNIT - IV

5 a) Define the following: 06

- i. Radiance
- ii. Luminance
- iii. Brightness
- iv. Hue
- v. Saturation
- vi. Tristimulus values

b) Explain the two different methods of color image quantization with relevant equations and examples. **06**

c) A conventional color image using the RGB coordinate requires 8 bits per color component or 24 bits per pixel. One way to reduce the bit requirement is by converting the RGB to HSI representation. **08**

Consider the RGB vectors values as given below:

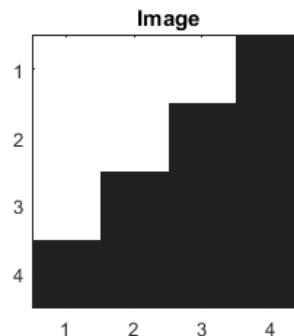
$$\begin{bmatrix} 100,100,100 & 150,0,0 & 0,150,0 \\ 255,0,0 & 255,255,255 & 0,0,0 \\ 100,150,200 & 0,0,255 & 100,200,150 \end{bmatrix}$$

Using the expression for RGB to HSI conversion and thereby determine what are the corresponding H, S, and I values for the image

OR

6 a) Analyze briefly any two color models used in color image processing with appropriate diagrams. **06**

b) With appropriate steps, describe the intensity slicing method of Pseudo color image processing. **06**


c) Write the steps involved in converting colors from RGB to HSI and vice versa. **08**

UNIT - V

7 a) Analyze the following processes used in morphological processing with relevant equation and examples:

- Dilation
- Erosion

b) Apply split and merge technique to segment the image shown in *Fig.7.1* and thereby write its Quadtree representation. **10**

Fig.7.1
