

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VII

Branch: Electronics & Telecommunication Engineering

Duration: 3 hrs.

Course Code: 22ET7PE3AD

Max Marks: 100

Course: ASIC DESIGN

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Explain with relevant diagram the Cell based ASIC structure.	CO1	PO1	06
		b)	Explain with relevant diagram the structured gate array	CO1	PO1	06
		c)	Explain with relevant diagrams the difference between PLD and FPGA.	CO1	PO1	08
OR						
	2	a)	Explain with relevant diagrams the difference between Channeled Gate array and Channelless gate array.	CO1	PO1	08
		b)	Explain the design steps for an ASIC.	CO1	PO1	06
		c)	Explain the importance of ASIC cell libraries.	CO1	PO1	06
UNIT - II						
	3	a)	Write a Verilog HDL code for an 8 bit conditional sum adder.	CO2	PO2	06
		b)	Design and implement a Brent Kung CLA.	CO2	PO2	08
		c)	Derive an expression for estimating the propagation delay of a logic cell.	CO2	PO2	06
OR						
	4	a)	Design and implement a data-path Carry Propagate adder.	CO2	PO2	06
		b)	With relevant diagram, implement and analyze a Dadda multiplier.	CO2	PO2	07
		c)	Compute the delay involved in implementing the function Z as a multistage AOI logic $Z(A_1, A_2, B_1, B_2, C) = \text{NOT}(\text{NAND}(A_1, A_2) \text{ AOI21}(B_1, B_2, C))$ Assume $P_{\text{inv}} = 1$, $q_{\text{inv}} = 1.7$, $r = 1.5$	CO2	PO2	07
UNIT - III						
	5	a)	With a neat diagram, explain the Xilinx XC3000 architecture.	CO3	PO1	08

	b)	Explain the concept of EPROM technology with relevant diagrams.	CO3	PO1	06
	c)	With a neat diagram, explain the Altera FLEX architecture.	CO3	PO1	06
		OR			
6	a)	With a neat diagram, explain the Xilinx XC5200 CLB and LC.	CO3	PO1	08
	b)	Explain the concept of metal-metal antifuse technology with relevant diagrams.	CO3	PO1	06
	c)	With a neat diagram, explain the ACT 1 architecture.	CO3	PO1	06
		UNIT - IV			
7	a)	With a neat diagram, explain the CMOS output buffer characteristics.	CO3	PO1	08
	b)	With a neat diagram, explain the concept of supply bounce.	CO3	PO1	06
	c)	With a neat diagram, explain the concept of metastability.	CO3	PO1	06
		OR			
8	a)	Considering an appropriate circuit diagram, explain the significance of Elmore's constant and Elmore's delay.	CO3	PO1	08
	b)	With a neat diagram, explain the importance of clamp diodes in determining the CMOS output buffer characteristics.	CO3	PO1	06
	c)	With a neat diagram, explain the importance of noise margins.	CO3	PO1	06
		UNIT - V			
9	a)	Consider a 4-bit latch and thereby sketch its: <ul style="list-style-type: none"> i. Schematic from gate level primitives ii. Four instances of cell DLAT iii. Vectored instance of DLAT 	CO3	PO2	10
	b)	Explain the hierarchical nature of an EDIF file.	CO3	PO1	10
		OR			
10	a)	Consider a 16-bit latch and thereby sketch its: <ul style="list-style-type: none"> i. Schematic for 4 instances of 4-bit latch ii. Four multiple instances of 4-bit latch 	CO3	PO2	10
	b)	With relevant diagrams, explain the bounding box problem.	CO3	PO1	10
