

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

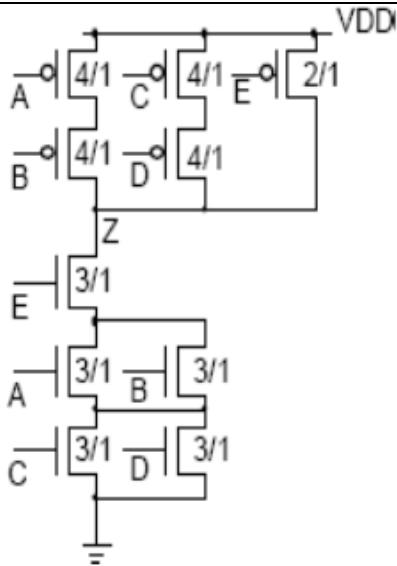
Programme: B.E.

Semester: VII

Branch: Electronics & Telecommunication Engineering

Duration: 3 hrs.

Course Code: 22ET7PE3AD


Max Marks: 100

Course: ASIC Design

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Draw the flow diagram for the ASIC design and explain every step. Also, comment on logical and physical design.	CO1	PO1	10
	b)	What are the different choices of ASIC cell libraries? Discuss each of them.	CO1	PO1	06
	c)	Mention the salient features of FPGA.	CO1	PO1	04
OR					
2	a)	Explain gate arrays used in semi-custom ASIC design. Discuss the different types of gates in detail with relevant figures.	CO1	PO1	12
	b)	Discuss the advantages and disadvantages of FPGA and ASIC Design in detail. When do you design circuits using full-custom design.	CO1	PO1	08
UNIT - II					
3	a)	Describe how carry save adder reduces carry rippling, in addition. Explain how 4-input CSA is constructed using 3-input CSA. What is the need for inserting latches in the 4-input CSA?	CO2	PO1	06
	b)	Explain Wallace Tree multiplier.	CO2	PO1	08
	c)	Draw a three-state bi-directional output buffer and explain how it works.	CO2	PO1	06
OR					
4	a)	Derive an expression for optimum path delay using propagation delay of the logic cascade.	CO2	PO2	08
	b)	For a logic path with a 1X drive minimum size inverter used to drive one input of 2X drive NOR3 logic cell in C ₅ technology, determine the total delay. Given logic ratio r = 1.5 and C _{out} = 0.3 pF.	CO2	PO1	08
	c)	For an AOI221 logic cell shown in Figure Q4(c), compute logical effort and logical area. Assume the logic ratio r = 2.	CO2	PO2	04

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

Figure Q4(c)

UNIT - III

5	a)	With the help of a block diagram explain the XC3000 Logic Block. Also, discuss the different modes of operation.	CO3	PO1	10
	b)	Develop the timing model for ACT-2 logic modules. How do you estimate the critical path between the registers?	CO3	PO1	10

OR

6	a)	Devise the Boolean function $f = ab + b'c + d$ in the ACT1 logic module.	CO3	PO2	06
	b)	Realize the following two-input logic gates using 2:1 MUX: <ol style="list-style-type: none"> NOR-11 AND1-1 OR 	CO3	PO2	06
	c)	With the help of a suitable figure explain the logic element of Altera FLEX 80000 series FPGA.	CO3	PO1	08

UNIT - IV

7	a)	With the help of a block diagram explain Xilinx XC4000 input output block.	CO3	PO1	12
	b)	What is supply bounce? With the help of a suitable example explain supply bounce with relevant waveforms.	CO3	PO1	08

OR

8	a)	Explain Altera's I/O control block and I/O element with suitable block diagrams.	CO3	PO1	12
	b)	With suitable figure explain Xilinx LCA interconnect.	CO3	PO1	08

UNIT - V				
	9	a)	What is the need for hierarchical design? Illustrate the hierarchical design for a 16-bit D latch with enable starting from primitive gates.	<i>CO3</i> <i>PO2</i> 12
		b)	What is a netlist screener? Why it is used? Discuss the errors that can be found using it.	<i>CO3</i> <i>PO1</i> 08
OR				
	10	a)	What are the difficulties of using ASIC libraries? Explain with an example.	<i>CO3</i> <i>PO1</i> 06
		b)	Justify the need for back-annotation in physical design flow.	<i>CO3</i> <i>PO1</i> 06
		c)	Illustrate the vector instances and buses for a 16-bit D latch with enable using one bit D-latch	<i>CO3</i> <i>PO2</i> 08

B.M.S.C.E. - ODD SEM 2024-25