

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VII

Branch: Electronics & Telecommunication Engineering

Duration: 3 hrs.

Course Code: 22ET7PE3DS

Max Marks: 100

Course: DATA SCIENCE

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			
			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Discuss the following in python, with an example code each. (i) Variables and types (ii) Operators on numbers and strings (iii) Assignments (iv) Typecasting	CO2	PO1	10
		b)	Explain functions with suitable code for the following cases in python. (a) function with args (b) function with *args (c) function with kwargs (d) function with **kwargs	CO2	PO1	10
OR						
	2	a)	Develop python functions for the following operations in linear algebra. (i) vector addition (ii) vector subtraction (iii) vector element by element addition (iv) scalar multiplication (v) dot product	CO2	PO1	10
		b)	List the types of data containers available in python and explain with an example code.	CO2	PO1	10
			UNIT - II			
3	a)	For the list given in $x=[1,2,3,1,4,5,1,3,2,4,5,1,1]$, find : (i) mean (ii) median (iii) quantile (x,25%) (iv) mode	CO3	PO2	10	

	b)	Define the following (i) Range (ii) Variance (iii) Standard deviation (iv) Covariance (v) Correlation coefficient	CO2	PO1	10
		OR			
4	a)	Consider a family with two children. If we assume that each child is equally likely to be a boy or a girl and the gender of the second child is independent of the gender of the first child. Then find the probability of (i) No girls (ii) One girl, one boy (iii) Two girls (iv) Both children are girls conditional on the event “the older child is a girl”. (v) Both children are girls conditional on the event “at least one of the children is a girl”.	CO3	PO2	10
	b)	Answer the following with respect to normal distribution : (i) Write the Expression of normal distribution (ii) Python implementation of normal distribution (iii) Draw the following normal distributions on the same plot. for (mean=0, standard deviation=1) and (mean=-1, standard deviation=1)	CO3	PO2	10
		UNIT - III			
5	a)	Describe PCA algorithm with relevant expressions and example.	CO2	PO1	10
	b)	With respect to Gradient Descent algorithm. (i) List the steps involved in minimizing a function. (ii) Develop a python code for Gradient Descent algorithm	CO2	PO1	10
		OR			
6	a)	Implement PCA algorithm using python code	CO3	PO2	10
	b)	Develop the following functions in python with respect to the multi dimension data. (i) Shape() (ii) Dot_product() (iii) Sum_of_squares() (iv) Variance() (v) Standard deviation()	CO2	PO1	10
		UNIT - IV			
7	a)	Following are the statistics of a test conducted for a particular disease in a laboratory :	CO3	PO2	10

		<p>TP=70, FP=4930, FN=13930, TN=981070. Calculate the following.</p> <p>(i) Accuracy (ii) Precision (iii) Recall (iv) F1 Score</p> <p>Also comment on the results obtained.</p>																															
	b)	<p>For the dataset given below, Apply KNN algorithm to predict the possible sport for the query (Angelina, 5 years, female) using k=3. Assume Male=0 and Female =1</p> <table border="1"> <thead> <tr> <th>Name</th><th>Age (years)</th><th>Gender</th><th>Sport</th></tr> </thead> <tbody> <tr> <td>Ajay</td><td>32</td><td>Male</td><td>Foot ball</td></tr> <tr> <td>Mark</td><td>40</td><td>Male</td><td>Neither</td></tr> <tr> <td>Sara</td><td>16</td><td>Female</td><td>Cricket</td></tr> <tr> <td>zaira</td><td>34</td><td>Female</td><td>Foot ball</td></tr> <tr> <td>Sachin</td><td>55</td><td>Male</td><td>Neither</td></tr> <tr> <td>Rahul</td><td>40</td><td>Male</td><td>Cricket</td></tr> </tbody> </table>	Name	Age (years)	Gender	Sport	Ajay	32	Male	Foot ball	Mark	40	Male	Neither	Sara	16	Female	Cricket	zaira	34	Female	Foot ball	Sachin	55	Male	Neither	Rahul	40	Male	Cricket	CO3	PO2	10
Name	Age (years)	Gender	Sport																														
Ajay	32	Male	Foot ball																														
Mark	40	Male	Neither																														
Sara	16	Female	Cricket																														
zaira	34	Female	Foot ball																														
Sachin	55	Male	Neither																														
Rahul	40	Male	Cricket																														
		OR																															
8	a)	Discuss the working of Naive Bayes classifier with necessary equations. Also describe the mathematics behind a spam filter with an example.	CO2	PO1	10																												
	b)	Apply multiple regression to estimate the value of 'y' given x1=3 and x2=2 as shown in the table below.	CO3	PO2	10																												
		<table border="1"> <thead> <tr> <th>Subject</th><th>y</th><th>x1</th><th>x2</th></tr> </thead> <tbody> <tr> <td>1</td><td>-3.7</td><td>3</td><td>8</td></tr> <tr> <td>2</td><td>3.5</td><td>4</td><td>5</td></tr> <tr> <td>3</td><td>2.5</td><td>5</td><td>7</td></tr> <tr> <td>4</td><td>11.5</td><td>6</td><td>3</td></tr> <tr> <td>5</td><td>5.7</td><td>2</td><td>1</td></tr> <tr> <td>6</td><td>?</td><td>3</td><td>2</td></tr> </tbody> </table>	Subject	y	x1	x2	1	-3.7	3	8	2	3.5	4	5	3	2.5	5	7	4	11.5	6	3	5	5.7	2	1	6	?	3	2			
Subject	y	x1	x2																														
1	-3.7	3	8																														
2	3.5	4	5																														
3	2.5	5	7																														
4	11.5	6	3																														
5	5.7	2	1																														
6	?	3	2																														
		UNIT - V																															
9	a)	With relevant expressions and graphs explain the working of (i) Linear regression (ii) Logistic regression	CO2	PO1	10																												
	b)	<p>The (x, y) coordinates of few points in 2 dimensional space belonging to 2 different class groups are as given below. Here 'x' is the point along 'x' axis and 'y' is the point along 'y' axis.</p> <table border="1"> <tbody> <tr> <td>Class 1</td><td>(1,1), (-1,1), (-1,-1), (1,-1)</td></tr> <tr> <td>Class 2</td><td>(2,0), (0,2), (-2,0), (0,-2)</td></tr> </tbody> </table> <p>Apply SVM algorithm to answer the following.</p> <p>a. Plot the points on a 2-D plane with different representations for class1 & class2. b. Find the transformed sample points.</p>	Class 1	(1,1), (-1,1), (-1,-1), (1,-1)	Class 2	(2,0), (0,2), (-2,0), (0,-2)	CO3	PO2	10																								
Class 1	(1,1), (-1,1), (-1,-1), (1,-1)																																
Class 2	(2,0), (0,2), (-2,0), (0,-2)																																

		<p>c. Estimate the hyper plane coefficients α with respect to each support vector</p> <p>d. Estimate the hyper plane equation along with weight vector and bias</p> <p>e. Draw the classifier line and hyper plane on given sample points in 2-D plane.</p>			
		OR			
10	a)	<p>Describe the following algorithms with necessary equations and tree diagrams :</p> <p>(i) Decision tree algorithm</p> <p>(ii) Random forest algorithm</p>	CO2	PO1	10
	b)	<p>Describe the following algorithms with necessary equations and graphs :</p> <p>(i) K means clustering</p> <p>(ii) Agglomerative clustering</p>	CO2	PO1	10
