

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: VII

Branch: Electronics & Telecommunication Engineering

Duration: 3 hrs.

Course Code: 22ET7PCMWR

Max Marks: 100

Course: MICROWAVES AND RADAR

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Explain the concept of generator and load mismatch in a transmission line. Discuss the effects of mismatch on the system performance and the techniques used to minimize these effects.	CO1		07
	b)	A 50-ohm coaxial line is terminated with a load impedance of $75+j25$ ohms. Design a quarter-wave transformer to match the load to the line. Calculate the characteristic impedance of the transformer and its physical length at a frequency of 1 GHz.	CO2	PO1	07
	c)	Compare and contrast the characteristics of coaxial lines, waveguides, and microstrip transmission lines in terms of their frequency range, attenuation, power handling capacity, and applications.	CO2	PO1	06
OR					
2	a)	Describe the concept of Voltage Standing Wave Ratio (VSWR) on a transmission line. How is it related to the reflection coefficient? Explain how VSWR is measured and what its significance is in practical applications.	CO1		07
	b)	Explain the concept of modes in a waveguide. Describe the characteristics of the dominant mode in a rectangular waveguide. How does the cutoff frequency of a waveguide affect its operating range?	CO1		07
	c)	Compare and contrast the advantages and disadvantages of microstrip lines and stripline transmission lines. Discuss their typical applications.	CO1		06
UNIT - II					
3	a)	Define the scattering parameters (S-parameters) of a two-port network. How are they related to incident and reflected waves?	CO2	PO1	07

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	<p>A two-port network has the following S-parameters:</p> <ul style="list-style-type: none"> $S_{11} = 0.2 \angle 30^\circ$ $S_{12} = 0.8 \angle -45^\circ$ $S_{21} = 0.8 \angle -45^\circ$ $S_{22} = 0.1 \angle 90^\circ$ <p>If a wave of 1 V amplitude is incident on Port 1, calculate the amplitude and phase of the reflected wave at Port 1 and the transmitted wave at Port 2.</p>	CO2	PO1	06
	c)	Explain how to find the overall transmission matrix for a cascaded system of two-port networks.	CO1		07
		OR			
4	a)	Derive and discuss the properties of S matrix.	CO2	PO1	07
	b)	<p>A 50Ω transmission line is terminated with a load impedance $Z_L = (75 + j25) \Omega$.</p> <p>i) Calculate the reflection coefficient (Γ_L) at the load.</p> <p>ii) Determine the VSWR on the transmission line.</p>	CO2	PO1	06
	c)	Analyze the purpose of impedance matching in microwave circuits? Describe the concept of binomial multi-section matching transformers.	CO2	PO1	07
		UNIT - III			
5	a)	Describe the operation of a Wilkinson power divider. Explain the purpose of the resistor and how it contributes to the isolation between the output ports.	CO2	PO1	07
	b)	What are the key differences between a T-junction power divider and a Wilkinson power divider? Discuss their advantages and disadvantages in terms of power handling, isolation, and impedance matching.	CO2	PO1	06
	c)	<p>A microwave amplifier has the following characteristics:</p> <ul style="list-style-type: none"> Input power: -10 dBm Output power: 15 dBm Noise figure: 3 dB <p>i) Calculate the power gain of the amplifier in decibels (dB).</p> <p>ii) Calculate the noise power at the output of the amplifier in dBm.</p>	CO2	PO1	07
		OR			
6	a)	Design a 4th-order low-pass Butterworth microwave filter with a cutoff frequency $\omega_c=2$ GHz. The filter should have a maximum passband ripple of 0.1 dB. Compute the element values for the physical implementation and explain the significance of impedance scaling in microwave filters.	CO3	PO2	07

	b)	Discuss and analyze the steps involved in designing a microwave filter using the insertion loss method. What are the key considerations in choosing the appropriate filter topology and component values?	CO2	PO1	06
	c)	An amplifier has the following S-parameters: $S_{11} = 0.1\angle-30^\circ$, $S_{12} = 0.05\angle60^\circ$, $S_{21} = 5\angle45^\circ$, $S_{22} = 0.2\angle-15^\circ$. Calculate the following: <ul style="list-style-type: none"> The transducer power gain (Gt) The available power gain (Ga) The operating power gain (Go) The unilateral power gain (Gu) 	CO2	PO1	07
UNIT - IV					
7	a)	What is the radar equation, and what are its key parameters?	CO2	PO1	07
	b)	How does CW radar work, and what are its limitations?	CO2	PO1	07
	c)	A radar system has the following parameters: <ul style="list-style-type: none"> Transmitted power (Pt) = 1 MW Antenna gain (G) = 30 dB Wavelength (λ) = 3 cm System losses (L) = 6 dB Calculate the maximum range of the radar to detect a target with a radar cross-section (σ) of 1 m^2 , assuming a minimum detectable signal-to-noise ratio (SNR) of 10 dB.	CO3	PO2	06
		OR			
8	a)	Analyze how the shape, size, and material composition of a target affect its Radar Cross Section (RCS).	CO2	PO1	07
	b)	How does a Pulsed Doppler Radar distinguish between moving targets and stationary clutter?	CO2	PO1	07
	c)	A Radar system has the following parameters: <ul style="list-style-type: none"> Transmitted power (Pt) = 100 kW Antenna gain (G) = 25 dB Wavelength (λ) = 5 cm System losses (L) = 4 dB Radar cross-section (σ) = 0.1 m^2 Minimum detectable signal-to-noise ratio (SNR) = 15 dB Calculate the maximum range of the Radar system to detect a target with the given parameters. Assume a bandwidth (B) of 1 MHz and a system temperature (T) of 290 K.	CO2	PO2	06

UNIT - V				
	9	a)	Explain the significance of the Radar Ambiguity Function in radar system design. How does it help in understanding the performance limitations of a radar system?	<i>CO1</i> 07
		b)	How are the probabilities of false alarm and detection related in radar systems? Explain the concept of receiver operating characteristic (ROC) curves in this context.	<i>CO2</i> <i>PO1</i> 07
		c)	Analyze the potential health effects associated with prolonged exposure to high-frequency electromagnetic fields.	<i>CO2</i> <i>PO1</i> 06
OR				
	10	a)	Describe and analyze the concept of Pulse Compression and how it improves radar performance.	<i>CO2</i> <i>PO1</i> 07
		b)	What are Swerling target models and how do they influence the radar equation?	<i>CO1</i> 07
		c)	What are the potential hazards of Electromagnetic (EM) waves, and explain the effects of exposure to different frequency ranges of EM waves on human health and the environment?	<i>CO1</i> 06
