

|        |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|
| U.S.N. |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|

# B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

## January / February 2025 Semester End Main Examinations

**Programme: B.E.**

**Semester: VII**

**Branch: Electronics & Telecommunication Engineering**

**Duration: 3 Hrs.**

**Course Code: 22ET7PCSIE**

**Max Marks: 100**

**Course: SIGNAL INTEGRITY AND EMI/EMC**

**Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.  
2. Missing data, if any, may be suitably assumed.

|                                                                                                                                                                                                       |   |    | <b>UNIT - I</b>                                                                                        |            |                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|--------------------------------------------------------------------------------------------------------|------------|----------------------|
|                                                                                                                                                                                                       |   |    | <i>CO</i>                                                                                              | <i>PO</i>  | <b>Marks</b>         |
| <b>Important Note:</b> Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice. | 1 | a) | Explain the role of EMC in the system approach of designing any product.                               | <i>CO2</i> | <i>PO1</i> <b>10</b> |
|                                                                                                                                                                                                       |   | b) | Discuss in detail signal integrity challenges.                                                         | <i>CO2</i> | <i>PO1</i> <b>10</b> |
| <b>OR</b>                                                                                                                                                                                             |   |    |                                                                                                        |            |                      |
|                                                                                                                                                                                                       | 2 | a) | Explain and analyze the various types of coupling along with techniques to minimize their effect.      | <i>CO2</i> | <i>PO1</i> <b>10</b> |
|                                                                                                                                                                                                       |   | b) | With a neat diagram and an example, describe the differential and common mode noise in EMC.            | <i>CO2</i> | <i>PO1</i> <b>10</b> |
|                                                                                                                                                                                                       |   |    | <b>UNIT - II</b>                                                                                       |            |                      |
|                                                                                                                                                                                                       | 3 | a) | What is an anechoic chamber? Explain its constructions and analyze its use in EMC testing.             | <i>CO2</i> | <i>PO1</i> <b>10</b> |
|                                                                                                                                                                                                       |   | b) | Explain, in detail, the construction and working of current probe in EMC measurements.                 | <i>CO1</i> |                      |
| <b>OR</b>                                                                                                                                                                                             |   |    |                                                                                                        |            |                      |
|                                                                                                                                                                                                       | 4 | a) | Explain the working of a spectrum analyzer with a neat functional block diagram.                       | <i>CO1</i> |                      |
|                                                                                                                                                                                                       |   | b) | Discuss the role of EMC for wireless testing mentioning the specified standards.                       | <i>CO1</i> |                      |
|                                                                                                                                                                                                       |   |    | <b>UNIT - III</b>                                                                                      |            |                      |
|                                                                                                                                                                                                       | 5 | a) | What is the basic purpose of the power system grounding? How are they accomplished in facility wiring? | <i>CO2</i> | <i>PO1</i> <b>10</b> |

|    |    |                                                                                                            |     |     |           |
|----|----|------------------------------------------------------------------------------------------------------------|-----|-----|-----------|
|    | b) | Analyze the need for grounding in any electronic system? Describe its various types.                       | CO2 | PO1 | <b>10</b> |
|    |    | <b>OR</b>                                                                                                  |     |     |           |
| 6  | a) | Define signal grounding and explain its objectives.                                                        | CO1 |     | <b>10</b> |
|    | b) | Describe and analyze the three basic ways of dealing with a problematic loop.                              | CO2 | PO1 | <b>10</b> |
|    |    | <b>UNIT - IV</b>                                                                                           |     |     |           |
| 7  | a) | Analyze the need for shielding in EMI /EMC? Explain any two ways in which shielding can be used.           | CO2 | PO1 | <b>10</b> |
|    | b) | Describe how coaxial cables and twisted pair cables are designed to address EMI/EMC.                       | CO3 | PO2 | <b>10</b> |
|    |    | <b>OR</b>                                                                                                  |     |     |           |
| 8  | a) | Explain the role of braided shield, Aperture, Gaskets and Conductive windows in addressing EMI/EMC issues. | CO1 |     | <b>10</b> |
|    | b) | Analyze in detail the test methods used for ESD.                                                           | CO2 | PO1 | <b>10</b> |
|    |    | <b>UNIT - V</b>                                                                                            |     |     |           |
| 9  | a) | Discuss the general PCB layout considerations.                                                             | CO1 |     | <b>10</b> |
|    | b) | Explain how discontinuities in the current return path affect the EMC and signal integrity issues.         |     |     | <b>10</b> |
|    |    | <b>OR</b>                                                                                                  | CO1 |     |           |
| 10 | a) | What is computational electromagnetics? Mention their applications and advantages.                         | CO1 |     | <b>10</b> |
|    | c) | Explain the computational tools used to solve the EM problems.                                             | CO2 | PO1 | <b>10</b> |

\*\*\*\*\*