

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January 2024 Semester End Main Examinations

Programme: B.E.

Semester: VII

Branch: Electronics and Telecommunication Engineering

Duration: 3 hrs.

Course Code: 19ET7PCWCM

Max Marks: 100

Course: Wireless Communication

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Explain the channel assignment strategies for efficient utilization of the radio spectrum	<i>CO1</i>	-	08
	b)	Derive the relation between any two nearest co-channel cells having hexagonal geometry	<i>CO 2</i>	<i>PO1</i>	06
	c)	A cellular service provider decides to use a digital TDMA scheme which can tolerate signal to interference ratio of 15dB in the worst case. Find the optimal value of N for (a) Omni directional antennas (b) 120^0 sectoring (c) 60^0 sectoring. Should sectoring be used? If so, which case: (60^0 or 120^0) should be used? (Assume a path loss exponent of n=4 and consider trunking efficiency).	<i>CO2</i>	<i>PO1</i>	06
OR					
2	a)	Illustrate with a neat diagram, handoff scenario at cell boundary	<i>CO2</i>	<i>PO1</i>	08
	b)	Design a cellular system using suitable approach to expand the capacity with optimized handoffs. Clearly indicate the reasons for your design approach	<i>CO3</i>	<i>PO2</i>	06
	c)	Certain area in a cellular system is congested with both high speed and pedestrian users. Design a suitable method to handle both high speed and low speed traffic. Justify your design approach	<i>CO3</i>	<i>PO2</i>	06
UNIT - II					
3	a)	Analyze the most widely used model for signal prediction in urban areas.	<i>CO3</i>	<i>PO2</i>	08
	b)	Analyze the diagram shown in Fig 3b and derive the expression for F_n .	<i>CO3</i>	<i>PO2</i>	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

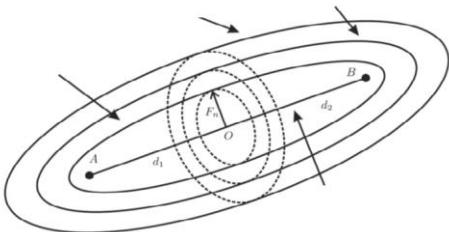


Fig 3b

c) If a transmitter produces 50W of power, express the transmit power in units of (a) dBm (b) dBW. If 50W is applied to a unity gain antenna with a 900 MHz carrier frequency, find the receiver power in dBm at a free space distance of 100 m from the antenna. What is P_r (10km)? Assume unity gain for the receiver antenna

CO2 PO1 **06**

UNIT - III

4 a) Illustrate with a neat matrix and conditions, a type of fading experienced by a signal as a function of baseband signal bandwidth and as a function of symbol period.

CO2 PO1 **08**

b) For the figure shown in Fig 4b, derive the relation between Doppler shift and the angle θ .

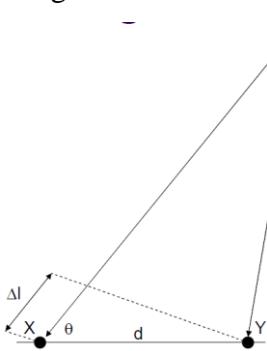


Fig 4b

c) Consider a transmitter which radiates a sinusoidal carrier frequency of 1850 MHz. For a vehicle moving 60 mph, compute the received carrier frequency if the mobile is moving (a) directly towards the transmitter, (b) directly away from the transmitter, (c) in a direction which is perpendicular to the direction of arrival of the transmitted signal.

CO2 PO1 **06**

OR

5 a) Create a detailed visual representation illustrating the functionality of a RAKE receiver and elucidate its operational principles in the context of wireless communication systems.

CO3 PO2 **08**

b) Analyze and evaluate the practical space diversity considerations.

CO3 PO2 **06**

c) Analyze various techniques employed for enhancing received signal quality in wireless communication

CO3 PO2 **06**

UNIT - IV

6 a) Evaluate the architecture of GSM by illustrating a comprehensive diagram

CO2 PO1 **08**

	b)	<p>Analyze the problem shown in the Fig 6b and suggest a suitable solution to overcome the same.</p> <p>Fig 6b</p>	CO3	PO2	06
	c)	<p>Identify the type of handover in the Fig 6c and analyze the steps for handover</p> <p>Fig 6c</p>	CO3	PO2	06
UNIT - V					
7	a)	Explain the FDD : Frame Structure Type 1 of LTE	CO1	-	08
	b)	Discuss the principle of OFDMA with a neat diagram.	CO1	-	06
	c)	Illustrate the evolutionary system architecture shift from GSM and UMTS to LTE with a neat diagram.	CO2	PO1	06
