

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

May / June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VIII

Branch: Electronics and Telecommunication Engineering

Duration: 3 hrs.

Course Code: 22ET8PE4LV

Max Marks: 100

Course: Low Power VLSI

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Explain the classification of MOSFETs as per ITRS.	<i>CO1</i>	-	10
	b)	Analyze the low power IC design beyond Sub-20 nm Technology with respect to issues related to: i. Silicon Manufacturability and Variation ii. Design Productivity	<i>CO1</i>	-	10
OR					
2	a)	Explain the classification of MOSFETs through deep sub-micron technology with V_{DS} vs I_{DS} graphs for each case.	<i>CO2</i>	<i>PO1</i>	10
	b)	Analyze the significance of following with respect to Low Power VLSI: i. Sub-threshold slope ii. Ultra-Low voltage operation	<i>CO1</i>	-	10
UNIT - II					
3	a)	Analyze the importance of static logic circuit in low power VLSI.	<i>CO1</i>	-	10
	b)	Analyze the concept of Ratioed logic considering an inverter. Support your analysis with relevant equations.	<i>CO2</i>	<i>PO1</i>	10
OR					
4	a)	Implement the following CMOS logic circuits: i. 3 input NAND gate ii. 2 input OR gate iii. $y = \overline{A + BC}$	<i>CO2</i>	<i>PO1</i>	10
	b)	Implement the following using Ratioed Logic: i. 3 input NOR gate ii. 2 input AND gate iii. $y = \overline{(A + B)C}$	<i>CO2</i>	<i>PO1</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III						
5	a)	Explain the concept of signal restoring Pass transistor logic design with relevant circuit diagram.	<i>CO1</i>	-	10	
	b)	Implement the following: i. Eight transistor CMOS TG implementation of XOR ii. TG based adder	<i>CO1</i>	-	10	
OR						
6	a)	Analyze the main features of CPL and thereby implement the following using CPL technology: i. 2 input XOR/XNOR ii. $Y = A + BC/A + BC$	<i>CO2</i>	<i>PO1</i>	10	
	b)	Analyze the operation of a tristate buffer and tristate inverter. Implement the tristate buffer using TG.	<i>CO1</i>	-	10	
UNIT - IV						
7	a)	Analyze the operation of a 2 input DTMOS NAND gate with relevant circuit diagram and timing diagrams.	<i>CO2</i>	<i>PO1</i>	10	
	b)	Implement the following using DTMOS logic and show their timing diagrams: i. 2 input NOR gate ii. $Y = \overline{A} + B(C + D)$	<i>CO2</i>	<i>PO1</i>	10	
OR						
8	a)	Implement the following using DTMOS logic and show their timing diagrams: i. 2 input NAND gate ii. 2X2 multiplier	<i>CO2</i>	<i>PO1</i>	10	
	b)	Analyze the operation of a 4:2 Compressor Adder with its block diagram and gate level presentation.	<i>CO2</i>	<i>PO1</i>	10	
UNIT - V						
9	a)	Analyze the importance of regenerative circuits. Explain the operation of a basic SR flipflop.	<i>CO2</i>	<i>PO1</i>	10	
	b)	Analyze the operation of a clocked JK latch and implement: i. Circuit diagram using gates ii. Functional table	<i>CO2</i>	<i>PO1</i>	10	
OR						
10	a)	Analyze the operation of a clocked SR latch and implement: i. Circuit diagram using gates ii. CMOS circuit iii. Timing diagram	<i>CO2</i>	<i>PO1</i>	10	
	b)	Implement and briefly analyze the following: i. Multiplexer-based Latch ii. Positive latch built using transmission gate	<i>CO2</i>	<i>PO1</i>	10	
