

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

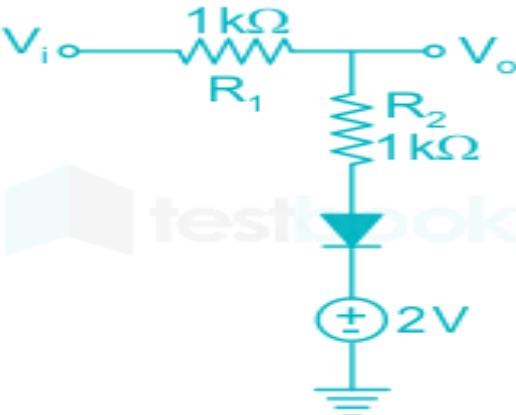
Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

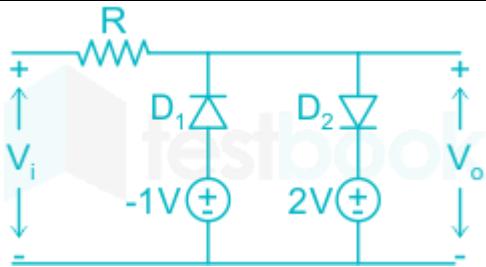
Programme: B.E.

Branch: ES Cluster (EEE/ ECE)

Course Code: 19ES3CCAEC

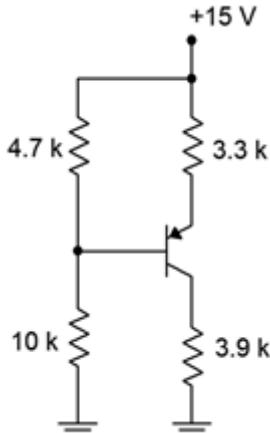

Course: Analog Electronic Circuits

Semester: III


Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.


UNIT - I			CO	PO	Marks
1	a)	Explain the need for Clamping circuits and draw the circuit diagram of positive peak clamper circuit and explain its operation.	CO1	PO1	08
	b)	The diode in the circuit shown in figure 1 has $V_{on} = 0.7$ Volts but is ideal otherwise. If $V_i = 5 \sin(\omega t)$ Volts, the minimum and maximum values of V_o (in Volts) are, respectively,	CO1	PO1	06
Figure 1					
	c)	Derive the equations for current gain, voltage gain, input and output impedance for a Voltage divider configuration using r_e model.	CO1	PO2	06
OR					
2	a)	Explain the operation of a negative clipper with neat sketches	CO1	PO1	05
	b)	Two silicon diodes, with a forward voltage drop of 0.7 V, are used in the circuit shown in the figure 2. The range of input voltage V_i for which the output voltage $V_o = V_i$ and Determine the transfer characteristics.	CO1	PO1	07

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as

Figure 2

c) Assuming $\beta=200$, determine the Q point (I_C and V_{CE}) for the circuit of Figure 3. Also determine the values of V_C and V_B .

Figure 3

UNIT - II

3 a) Explain the low frequency response of BJT amplifier and derive the expression for R_i , V_i , R_o , F_{LS} , F_{LE} , R_e and A_v .
 b) Prove that Miller effect Capacitance, $C_{miller}=(1-A_v)C_f$.
 c) Name any two topologies of the feedback amplifiers and draw any one block diagram schematic among topologies.

UNIT - III

4 a) For a class B amplifier using a supply of $V_{CC} = 12V$ and driving a load of 8Ω , determine (i) maximum load power (ii) d.c. input power (iii) collector efficiency.
 b) Explain the working of transformer coupled Class A power amplifier with a neat circuit diagram, waveforms and necessary equations.
 c) Define Power Amplifier. Explain the Classification of power amplifiers based on class of operation.

UNIT - IV

5 a) Define Biasing. Explain the different types of biasing MOSFET amplifiers
 b) Draw V_i versus V_o characteristics of n-channel MOSFET.

CO1 *PO2*

08

CO2 *PO1*

08

CO2 *PO1*

07

CO2 *PO1*

05

CO3 *PO1*

07

CO3 *PO2*

08

CO3 *PO1*

05

CO3 *PO1*

08

CO3 *PO1*

04

	c)	Consider a process technology for which for which $L_{min} = 0.4\mu m$, $t_{ox} = 8nm$, $\mu_n = 450cm^2/V.s$ and $V_t = 0.7V$ (i) Find C_{ox} and k_n (ii) For a MOSFET with $W/L = 8\mu m/0.8\mu m$, calculate the values of V_{GS} and V_{DSmin} needed to operate the transistor in the saturation region with a dc current $I_D = 100\mu A$. (iii) For the device in (ii) find the value of V_{GS} required to cause the device to operate as a 1000Ω resistor for a very small V_{DS} .	CO3	PO2	08
		UNIT - V			
6	a)	Explain the working principle of Wilson current mirror and derive an expression for Wilson current transfer ratio.	CO3	PO1	10
	b)	Derive an expression for input resistance, output resistance, voltage gain and overall voltage gain of a common source MOSFET amplifier.	CO3	PO1	10
		OR			
7	a)	Explain the working of current steering circuit using MOSFET with neat Circuit Diagram.	CO4	PO1	10
	b)	Develop a T-equivalent circuit model from its small signal model for an n-channel enhancement MOSFET	CO4	PO1	10
