

B.M.S. College of Engineering, Bengaluru-560019

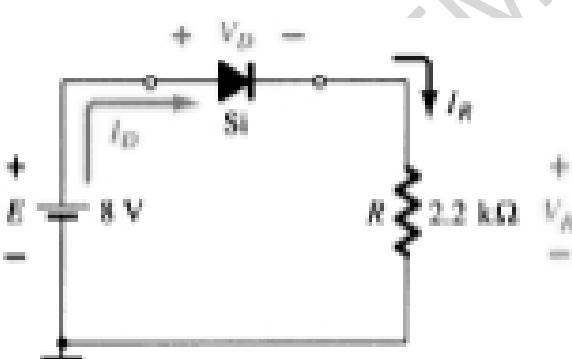
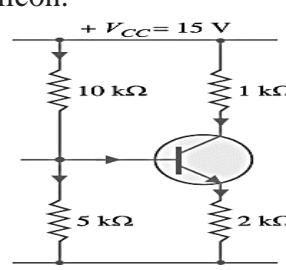
Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

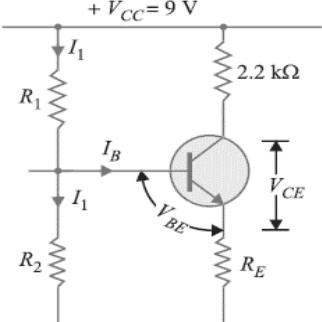
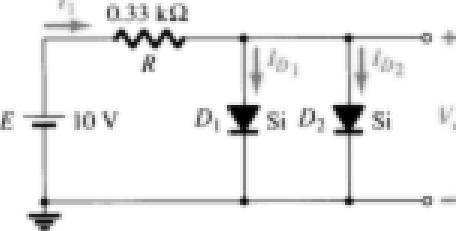
Program: B.E.

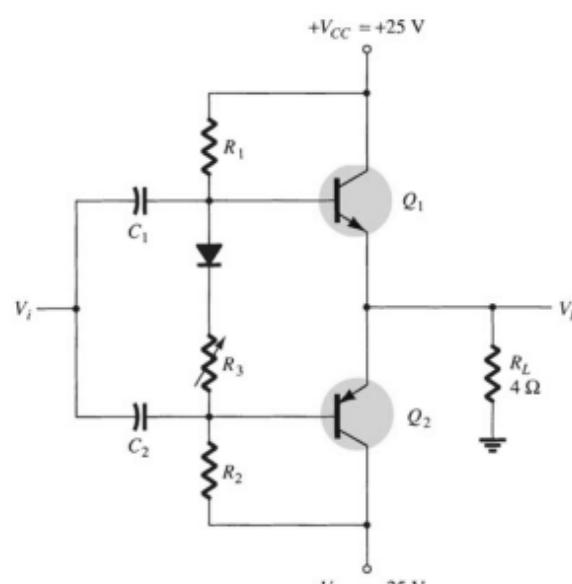
Semester: III

Branch: ES CLUSTER (ECE/TCE/EIE/MD)



Duration: 3 hrs.

Course Code: 19ES3CCAEC



Max Marks: 100


Course: Analog Electronics Circuits

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	For the series diode configuration of Fig.1(a) determine V_D , V_R , and I_D .	CO1	PO1	04
		<p>Fig.1(a)</p>			
	b)	Fig.1(b) shows the voltage divider bias method. Draw the d.c. load line and determine the operating point. Assume the transistor to be of silicon.	CO2	PO2	06
		<p>Fig.1(b)</p>			
	c)	Explain the exact and approximate design of voltage divider bias for a transistor.			10
		OR			
2	a)	With the circuit write the output for series negative and positive clipper, Biased shunt positive clipper.	CO2	PO2	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	<p>In the circuit shown in Fig. 2(b), the operating point is chosen such that $I_C = 2\text{mA}$, $V_{CE} = 3\text{V}$. If $R_C = 2.2\text{k}\Omega$, $V_{CC} = 9\text{V}$ and $\beta = 50$, determine the values of R_1, R_2 and R_E. Take $V_{BE} = 0.3\text{V}$ and $I_1 = 10I_B$.</p> <p>Fig. 2(b)</p>			08
	c)	<p>Determine V_o, I_1, I_{D1}, and I_{D2} for the parallel diode configuration of Fig. 2(c).</p> <p>Fig. 2(c)</p>	CO2	PO2	04
		UNIT - II			
3	a)	<p>The input power to a device is 10,000 W at a voltage of 1000 V. The output power is 500 W, while the output impedance is 20.</p> <ol style="list-style-type: none"> Find the power gain in decibels. Find the voltage gain in decibels. Explain why parts (i) and (ii) agree or disagree. 	CO3	PO3	06
	b)	<p>Discuss the effect of capacitors that determines the low frequency response with relevant circuit and graphs.</p>	CO3	PO3	10
	c)	<p>Determine the voltage gain, input, and output impedance with feedback for voltage-series feedback having $A = -100$, $R_i = 10\text{k}$, and $R_o = 20\text{k}$ for feedback of (a) $\beta = -0.1$ and (b) $\beta = -0.5$.</p>	CO3	PO3	04
		OR			
4	a)	<p>Derive an expression for Millers input and output capacitance.</p>	CO3	PO3	10
	b)	<p>Write the block diagram of the following indicating A, A_f and β.</p> <ol style="list-style-type: none"> Voltage series feedback amplifier Voltage shunt feedback amplifier Current series feedback amplifier Current shunt feedback amplifier. <p>Write an Expression for Z_i, Z_o, A_v and A_i for Voltage series feedback amplifier.</p>	CO3	PO3	10

UNIT - III					
5	a)	Discuss the working principle of class B power amplifier circuit. Derive an equation for power conversion efficiency.	CO3	PO3	10
	b)	Briefly explain Amplifier Efficiency and DC Bias Operations.	CO3	PO3	10
OR					
6	a)	Explain the working principle of a class A transformer coupled power amplifier circuit. Show that maximum power conversion efficiency is 50% for class A power amplifier.	CO3	PO3	10
	b)	For the circuit of Fig.6(b), calculate the input power, output power, and power handled by each output transistor and the circuit efficiency for an input of 12 V rms.	CO3	PO3	10
<p style="text-align: center;">Fig.6(b)</p>					
UNIT - IV					
7	a)	With relevant circuit discuss MOSFET as an amplifier and as a switch.	CO3	PO3	10
	b)	Determine the following for the network of the Fig.7(b) given below: i. I_{DQ} and V_{VGSQ} . ii. V_D	CO3	PO3	10

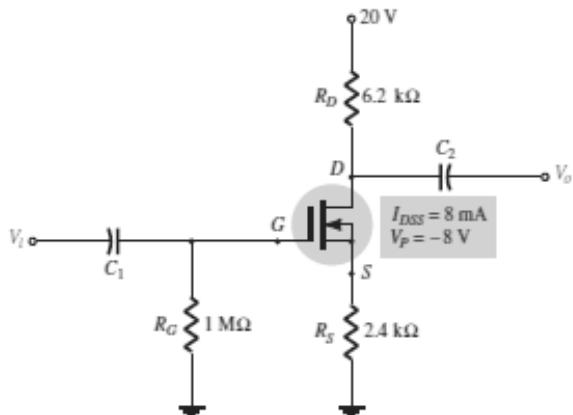


Fig.7(b)

OR

8 a) Determine I_{DQ} and V_{VDSQ} for the enhancement-type MOSFET of Fig.8(a) given below.

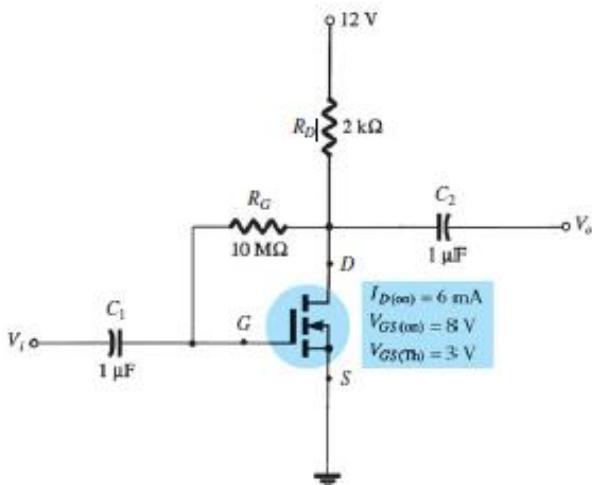


Fig.8(a)

b) Illustrate CMOS Inverter with relevant circuit Diagram.

UNIT - V

9 a) With the circuit derive for the voltage gain, input impedance and output impedance for the common source (CS) MOS amplifier with R_s .

b) Derive an expression for trans conductance of MOSFET.

OR

10 a) Explain the developmental steps of the T equivalent circuit model with necessary circuit diagram.

b) Explain the working principle of Wilson current and derive an expression for the Wilson current transfer ratio.
