

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

May 2023 Semester End Main Examinations

Programme: B.E.

Branch: ES Cluster(ECE/EE/ML/ET/EI)

Course Code: 19ES3CCAEC

Course: Analog Electronic Circuits

Semester: III

Duration: 3 hrs.

Max Marks: 100

Date: 15.05.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1 a) Determine V_o for the network shown in figure 1. a

06

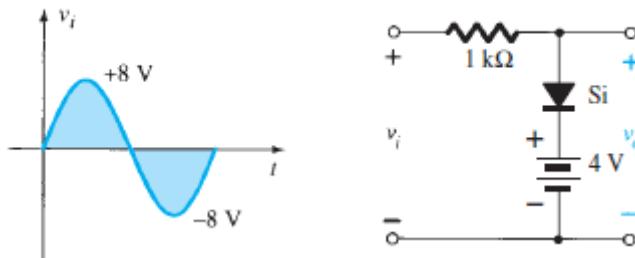


Fig 1.a

b) Derive an equation for IB and VCE of voltage divider biasing, using approximate analysis. **06**

c) Obtain the AC equivalent model of a CE voltage divider network and derive Z_i , Z_o , A_v , A_i **08**

2 a) Sketch V_o for the circuit shown in figure 2.a

06

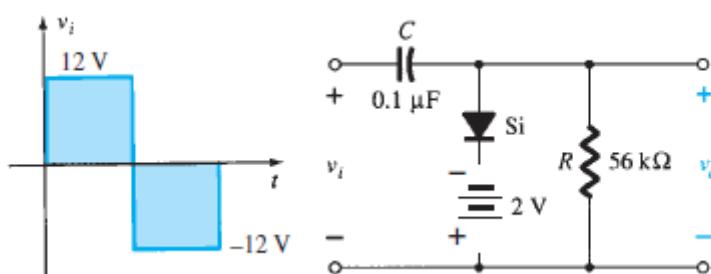



Fig 2.a

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

b) For the voltage divider configuration shown below , Use approximate analysis and calculate **06**

- V_B
- I_C and I_B
- V_E and V_{CE} . Assume silicon transistor with $\beta = 110$

c) Derive an expression for Z_i, Z_o, Av and A_I for the voltage divider network using r_e equivalent model **08**

UNIT - II

3 a) Obtain the miller effect input and output capacitance **08**
 b) Discuss the properties of negative feedback amplifier. **06**
 c) Calculate the gain, input, and output impedances of a voltage-series feedback amplifier having $A = -300$, $R_i = 1.5 \text{ k}\Omega$, $R_o = 50 \text{ k}\Omega$, and $\beta = 1/15$. **06**

UNIT - III

4 a) Explain the operation of a transformer coupled class B power amplifier **08**
 b) Calculate the input power, output power and efficiency of the amplifier circuit shown in figure 4.b for an input voltage that results in a base current of 10mA peak. **06**

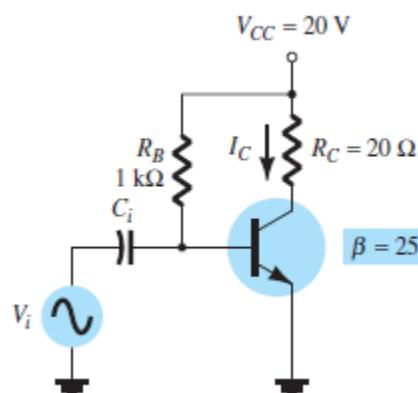


Fig 4.b

c) What is harmonic distortion? Explain the causes of distortion. **06**

UNIT - IV

5 a) Explain the following with respect to enhancement MOSFET **06**

- Triode region
- Saturation region

b) Design the circuit shown in the Fig 5(b) so that the transistor operates at $I_D = 0.4\text{mA}$ and $V_D = +0.5\text{V}$. The NMOS transistor has $V_t = 0.7\text{V}$, $\mu_nC_{\text{ox}} = 100\mu\text{A/V}^2$, $L = 1\mu\text{m}$, and $W = 32\mu\text{m}$. Neglect the channel length modulation effect. **06**

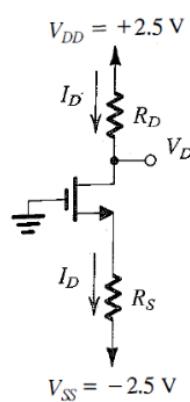


Fig 5(b)

c) Describe an arrangement to bias MOSFET using a constant current source **08**

UNIT - V

6 a) Derive an expression for g_m using small signal condition. **10**

b) Compare CS and CG amplifier **04**

c) Derive an expression for A_v of a CG amplifier **06**

OR

7 a) Construct a small signal equivalent circuit of a CS amplifier with a source resistance and show its effect voltage gain **10**

b) Derive the overall gain of a source follower using small signal model of MOSFET. **10**
