

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

December 2023 Supplementary Examinations

Programme: B.E.

Branch: MD/EIE

Course Code: 22ES3PCAME

Course: Analog Micro Electronics

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1 a) Determine V_o for the network shown in figure 1. A,

06

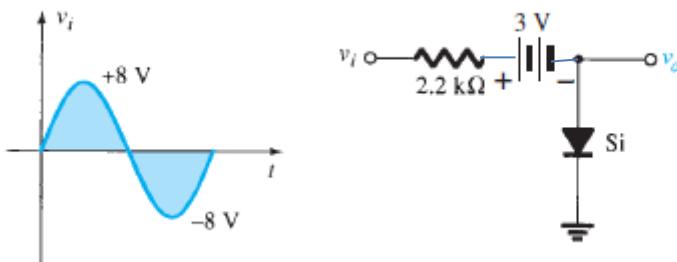


Fig1.a

b) Estimate I_C , V_E , V_B , R_1 for the network shown in figure 1.b,

06

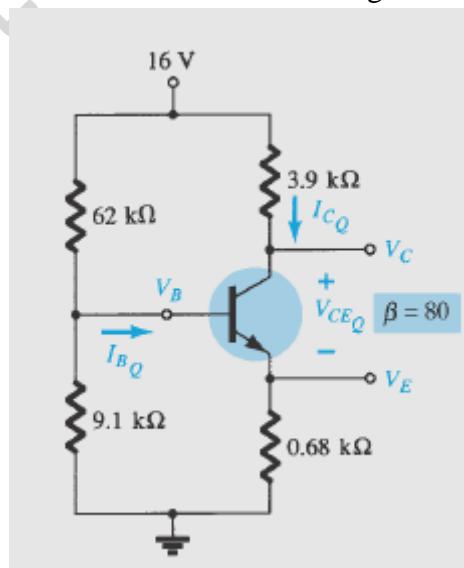


Fig1.b

c) Obtain the AC equivalent model of a CE voltage divider bias network and derive Z_i , Z_o , A_v , A_i using re model

OR

2 a) Sketch v_o for the positive clamping circuit and explain the operation with negative reference voltage 06

b) Determine r_e , Z_i , Z_o and A_v for the network shown in figure 2.b 08

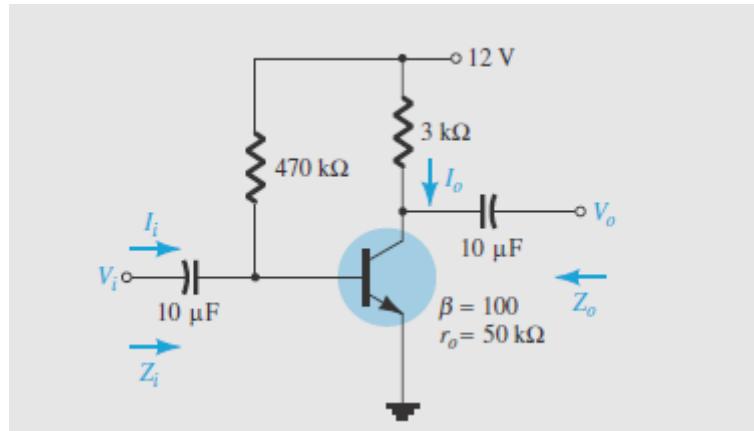


Fig 2.b

c) Derive an equation for I_B and V_{CE} of voltage divider biasing, using approximate analysis. 06

UNIT - II

3 a) Demonstrate the low frequency response of a RC coupled amplifier 08

b) Illustrate the significant of negative feedback on bandwidth of an amplifier. 04

c) Derive an expression for gain, input impedance and output impedance of a voltage shunt feedback amplifier 08

UNIT - III

4 a) Explain the operation of a series fed class A power amplifier and obtain the efficiency. 08

b) calculate the input power, output power, and power handled by each output transistor of a class B power amplifier and the circuit efficiency for an input of 12 V rms with $V_{cc} = 25 \text{ V}$, and a load 4Ω 06

c) What is harmonic distortion? Explain the causes of distortion. 06

UNIT - IV

5 a) With a neat diagram and i_d-v_{ds} characteristics explain the operational of n – channel enhancement MOSFET. When 08

(a) $V_{GS} \leq V_t$
 (b) $V_{GS} > V_t$ & $V_{DS} < V_{GS} - V_t$
 (c) $V_{GS} > V_t$ & $V_{DS} \geq V_{GS} - V_t$.

b) Analyze the circuit shown in figure 5.b having $V_t=1\text{V}$, $K_n'(W/L)=1\text{mA/V}^2$, $\lambda=0$. determine I_D , V_s , V_{GS} , V_D . **06**

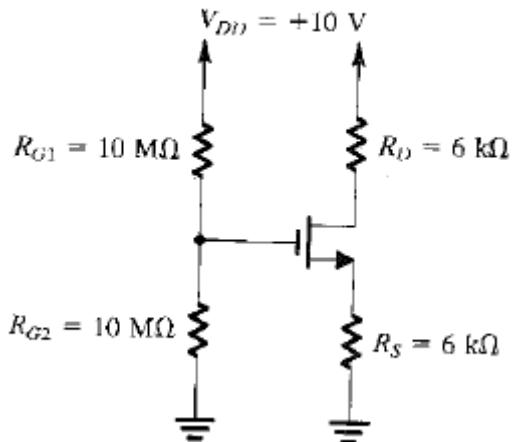


Fig 5.b

c) Using the transfer characteristics of a MOSFET , obtain the analytical expression of drain-to-source resistance in the triode region **06**

UNIT - V

6 a) Sketch the T-equivalent model of an n channel enhancement MOSFET. **08**
 b) Construct the small signal model of a Common Source amplifier and derive an expression for gain, input and output impedance. **08**
 c) Compare Common Gate and Common Source amplifier **04**

OR

7 a) Derive an expression for transconductance of MOSFET. **06**
 b) With relevant circuits and expressions, explain the MOSFET steering circuits. **06**
 c) Develop the overall gain, input and output impedance of a source follower using small, signal model of MOSFET **08**
