

B.M.S. College of Engineering, Bengaluru-560019

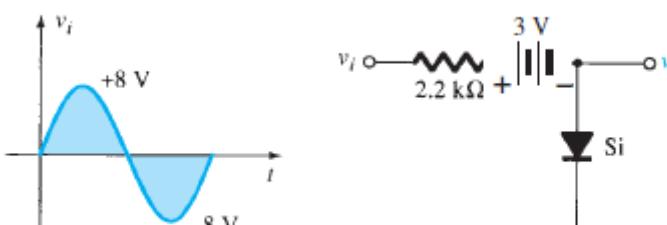
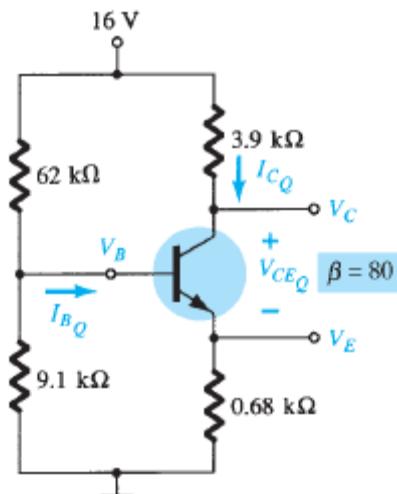
Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

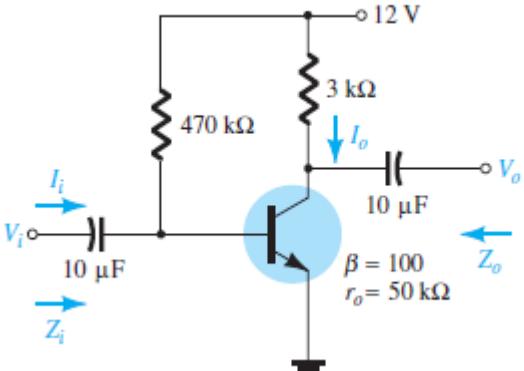
Programme: B.E.

Branch: Cluster (EIE/MD)

Course Code: 22ES3PCAME



Course: Analog Microelectronics

Semester: III


Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	<p>Determine V_o for the network shown in figure 1a</p> <p>figure 1a</p>	CO1		06
	b)	<p>Estimate I_C, V_E, V_B, R_1 for the network shown in figure 1b</p> <p>figure 1b</p>	CO2	PO1	06
	c)	<p>Obtain the AC equivalent model of a CE voltage divider bias network and derive Z_i, Z_o, A_v, A_I using re model</p>	CO2	PO1	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

OR					
2	a)	Sketch v_o for the positive clamping circuit and explain the operation with negative reference voltage	CO2	PO1	06
	b)	Determine r_e , Z_i , Z_o and A_v for the network shown in figure	CO2	PO1	06
	c)	Derive expression for I_c & V_{ce} for voltage divider bias using exact method of analysis.	CO2	PO1	08
UNIT - II					
3	a)	Demonstrate the low frequency response of a RC coupled amplifier	CO2	PO1	08
	b)	Illustrate the significant of negative feedback on bandwidth	CO2	PO1	04
	c)	Derive an expression for gain and input impedance and output impedance of a voltage shunt feedback amplifier	CO2	PO1	08
UNIT - III					
4	a)	Explain the operation of a series fed class A power amplifier and obtain the efficiency.	CO2	PO1	08
	b)	calculate the input power, output power, and power handled by each output transistor of a class B power amplifier and the circuit efficiency for an input of 12 V rms with $V_{cc}=25$ v, and a load 4Ω	CO2	PO1	06
	c)	What is harmonic distortion? Explain the causes of distortion.	CO2	PO1	06
UNIT - IV					
5	a)	Illustrate the operation of a MOSFET as V_{DS} is Increased	CO2	PO1	08
	b)	Analyze the circuit shown in figure 5.b having $V_t=1$ v, $K_n'(W/L)=1$ mA/V ² , $\lambda = 0$. determine I_D , V_s , V_{GS} , V_D .	CO2	PO1	06

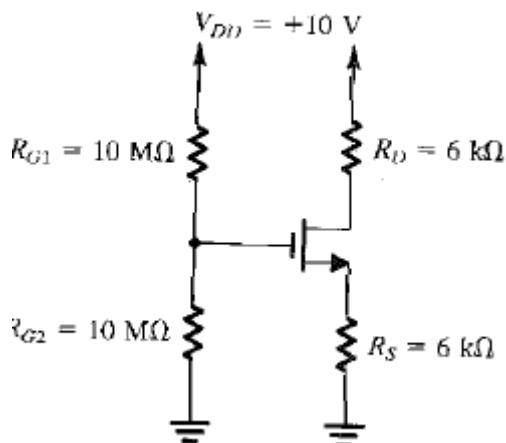


Figure 5b

UNIT - V					
6	a)	Obtain the signal current of MOSFET in the drain terminal	CO2	PO1	08
	b)	Construct the small signal model of a CS amplifier and derive an expression for gain	CO2	PO1	08
	c)	Compare CG and CS amplifier	CO2	PO1	04
OR					
7	a)	Construct the high frequency model of a CS amplifier and derive the expression	CO2	PO1	10
	b)	Develop the overall gain of a source follower using small, signal model	CO2	PO1	10
