

B.M.S. College of Engineering, Bengaluru-560019

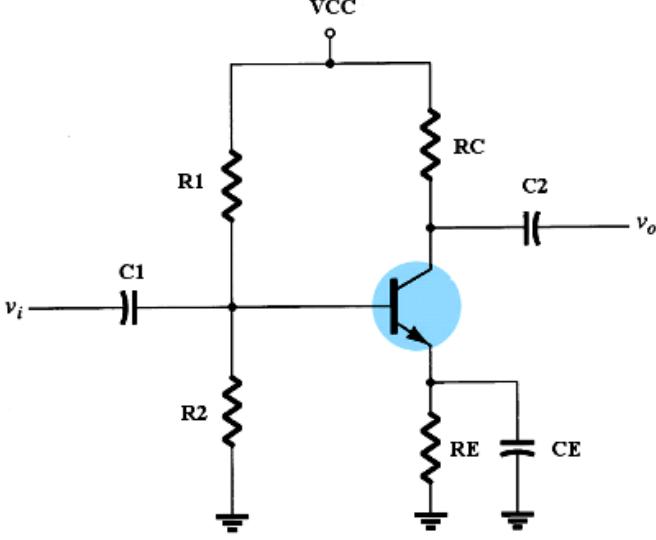
Autonomous Institute Affiliated to VTU

June / July 2024 Semester End Make-Up Examinations

Programme: B.E.

Branch: MD/EIE

Course Code: 23ES3PCAME


Course: Analog Microelectronics

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	What do you mean by clipping circuits? Draw and explain symmetrical double ended diode biased clipper circuit with the help of transfer characteristics.	CO1	PO3	08
	b)	Determine the voltage V_{CEQ} and I_{CQ} for the voltage divider configuration of the circuit shown in Figure 1.b) $R1=39k\Omega$, $R2=3.9k\Omega$, $RC=10k\Omega$, $RE=1.5k\Omega$, $C1=10\mu F$, $C2=10\mu F$, $CE=50\mu F$, $\beta= 140$ and $VCC=22$ volts.	CO1	PO3	08
	c)	Draw the circuit diagram of BJT re Transistor model.	CO1	PO3	04
OR					
2	a)	Design a clamper circuit to perform the function indicated in Fig 2.a.	CO1	PO3	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

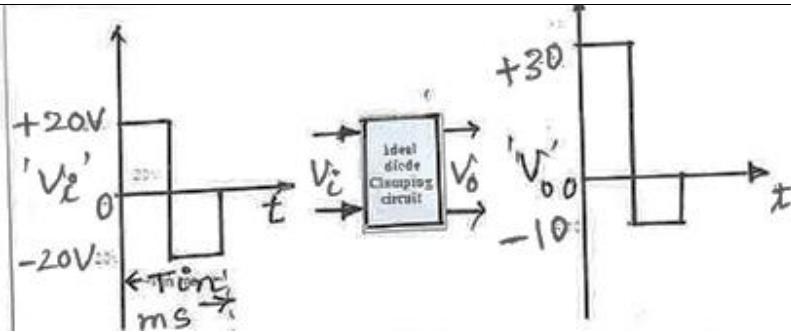


Fig.2.a.

b) For the circuit shown in Fig.2.b. Determine the DC bias voltage VCE and IC for the voltage divider BJT circuit. Given $R_1=16\text{k}\Omega$, $R_2=9.2\text{k}\Omega$, $R_C=3.9\text{k}\Omega$, $R_E=680\ \Omega$, $V_{CC}=16$ volts and $\beta=80$.

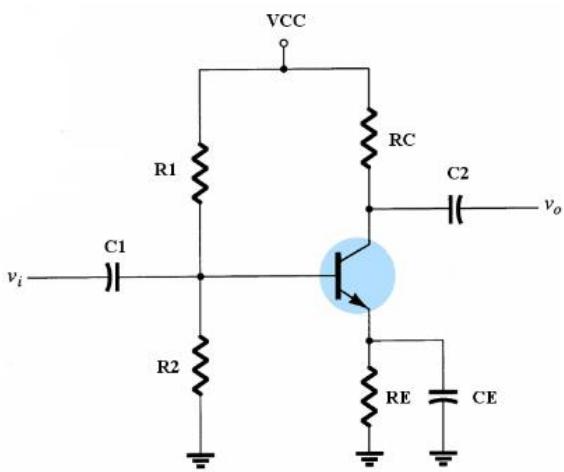


Fig.2.b.

c) For the network of Figure 2.c., determine: i). Z_I , ii). Z_o , iii). A_v , iv). A_i

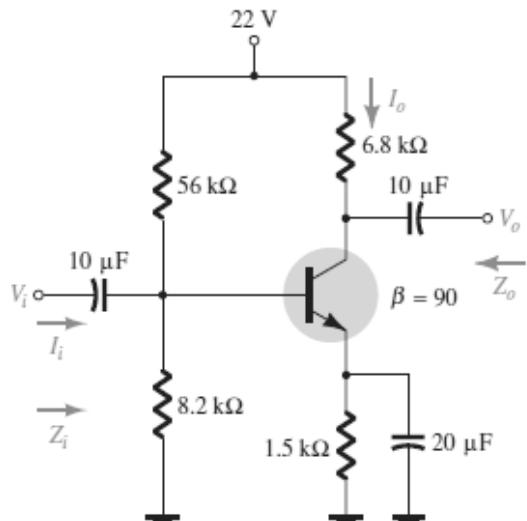


Fig. 2.c.

UNIT - II

3 a) Discuss the factors that affects the low frequency response of a BJT- CE amplifier.

CO1 PO3 08

CO1 PO3 06

06

	b)	Prove that Miller effect capacitance, $C_{Miller} = (1-AV) \cdot C_f$.	CO2	PO3	06
	c)	Name four topologies of the feedback amplifiers. Draw the block schematic of voltage series feedback amplifier and also voltage series feedback Amplifier having gain $A = -100$, $R_{in} = 10 \text{ k}\Omega$ and $R_{out} = 20 \text{ k}\Omega$ for feedback, $\beta = -0.1$.	CO2	PO3	08
	UNIT - III				
4	a)	How are power amplifiers classified? and explain them in brief.	CO2	PO3	06
	b)	The class A transformer coupled power amplifier has zero signal collector current of 50 mA. If the collector supply voltage is 5 V, find (i) the maximum a.c. power output (ii) the power rating of transistor (iii) the maximum collector efficiency.	CO3	PO3	06
	c)	Derive expression for efficiency of Class B push-pull amplifier. For a class B Amplifier providing a 20V peak signal to a 16Ω load (speaker) and a power supply of $V_{cc} = 30\text{V}$. Determine the input power, output power and power efficiency.	CO4	PO4, PO5	08
	UNIT - IV				
5	a)	Discussing the Basic Structure of MOSFET, explain its principle of Operation of MOSFETS.	CO2	PO2	10
	b)	For the given circuit in Figure 5(b) $I_{D(ON)} = 6 \text{ mA}$, $V_{GS(ON)} = 8 \text{ V}$, $V_{GS(TH)} = 3 \text{ V}$. Calculate V_{GS} , I_D and V_{DS} .	CO3	PO3	10
	<p>Fig. 5(b)</p>				
	UNIT - V				
6	a)	Draw the T Equivalent circuit model of MOS device and comment on the gate current value.	CO3	PO3	10
	b)	Figure 6.b. Shows the basic circuit of single-stage MOS amplifier. Consider for the case $V_{DD} = V_{SS} = 10 \text{ V}$, $I = 0.5 \text{ mA}$, $R_G = 4.7 \text{ M}\Omega$, $R_D = 15 \text{ k}\Omega$, $V_t = 1.5 \text{ V}$, and $k'_n = 1 \text{ mA/V}^2$. Find V_{ov} , V_{GS} , V_s and V_D . Also, Calculate the values of g_m , r_o , assuming the $V_A = 75 \text{ V}$. What is the maximum possible signal swing at the drain for which MOSFET remains in satuartion.	CO4	PO4, 5	10

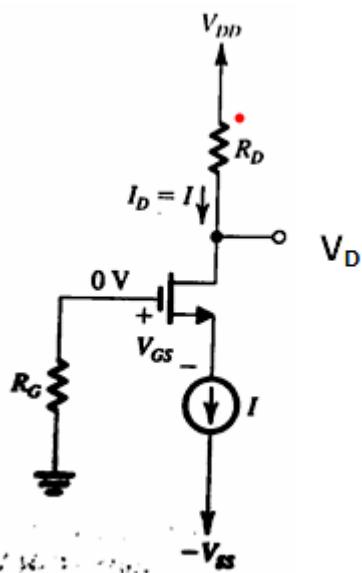


Fig 6.b.

OR

7 a) For Small-signal operation of the enhancement MOSFET amplifier, derive $A_v = v_d/v_{gs} = -gm \cdot R_D$.

CO2 PO2 **06**

b) Draw and explain FET based phase shift oscillator with circuit diagram.

CO5 PO2,
PO3 **08**

c) Analyze the Wilson MOS mirror circuit with improved performance. Justify for the reducing β dependency and increase in output resistance in Wilson MOS mirror circuits.

CO5 PO2,
PO3 **06**
