

B.M.S. College of Engineering, Bengaluru-560019

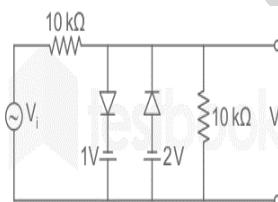
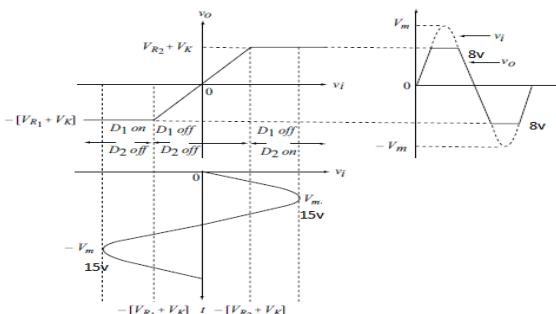
Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

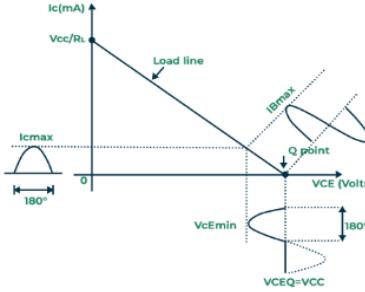
Programme: B.E.

Semester: III

Branch: MD / EIE



Duration: 3 hrs.

Course Code: 23ES3PCAME / 22ES3PCAME


Max Marks: 100

Course: Analog Microelectronics

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Assuming ideal diode in the circuits shown below in figure-1, draw the output voltage for the given input signal of $V_i = 10 \sin \omega t$.	CO1	PO1	10
		<p>Fig-1</p>			
OR					
2	a)	Determine the dc bias voltage V_{CE} and the current I_C for the voltage-divider Circuit having $R_1 = 39k\Omega$, $R_2 = 3.9 k\Omega$, $R_C = 10k\Omega$, $R_E = 1.5k\Omega$, $V_{CC} = 22V$.	CO1	PO1	10
	b)	Design a circuit to obtain the following transfer function. Also explain its working.	CO3	PO2	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - II					
3	a)	Derive expressions for gain, input resistance and output resistance of voltage shunt feedback with block representation approach.	CO2	PO1	10
	b)	Discuss the significance of Miller capacitance at high frequencies with derivation.	CO2	PO1	10
OR					
4	a)	Discuss the properties and advantage of a negative feedback amplifier	CO2	PO1	10
	b)	Determine the lower cut off frequency for a RC coupled amplifier network using the following parameters. Comment on the impact of the capacitance in low frequency. $C_s = 10 \mu F, C_E = 20 \mu F, C_C = 1 \mu F, R_s = 1 k\Omega, R_1 = 40 k\Omega, R_2 = 10 k\Omega, R_E = 2 k\Omega, R_C = 4 k\Omega, R_L = 2.2 k\Omega$	CO2	PO1	10
UNIT - III					
5	a)	Analyze the characteristics given in Figure 3. Obtain the maximum efficiency and the power dissipation by each transistor when they operate at such conditions.	CO3	PO2	10
		<p>Fig-3</p>			
	b)	Define total harmonic distortion in power amplifiers. Calculate the harmonic distortion components for an output signal having fundamental amplitude of 3V, second harmonic amplitude of 0.5 V, third harmonic amplitude of 0.1 V, and fourth harmonic amplitude of 0.05 V. Determine the total harmonic distortion.	CO2	PO1	05
	c)	A class A transformer coupled power amplifier has zero signal collector current of 50 mA. If the collector supply voltage is 5 V, find (i) the maximum ac power output (ii) the power rating of transistor (iii) the maximum collector efficiency.	CO2	PO1	05
OR					
6	a)	Suggest a suitable method to increase the efficiency of series fed Class A Power Amplifier and deduce an expression to prove the efficiency is higher than Series fed Class A type	CO2	PO1	10
	b)	List the different types of power amplifier and distinguish them based on efficiency, linearity, conduction angle of transistor, operating point and transfer characteristics.	CO2	PO1	05

	C)	A transformer coupled class A power amplifier supplies power to 20Ω load connected across the secondary of a stepdown transformer having a turns ratio of 5:1. Determine the maximum power output for a zero-signal collector current of 120mA.	CO2	PO1	05
		UNIT - IV			
7	a)	Describe the CMOS device structure in detail.	CO2	PO1	05
	b)	Analyze and Comment on the drain currents for a n-channel MOSFET with $t_{ox} = 20$ nm, $\mu_n = 650$ cm 2 /Vs, $V_t = 0.8$ V, and $W/L = 10$. (a) $V_{GS} = 5$ V and $V_{DS} = 1$ V. (b) $V_{GS} = 2$ V and $V_{DS} = 1.2$ V. (c) $V_{GS} = 5$ V and $V_{DS} = 0.2$ V. (d) $V_{GS} = V_{DS} = 5$ V.	CO3	PO1	08
	C)	Describe the transfer characteristics of CS amplifier. Also explain how it could be used as an amplifier.	CO2	PO1	07
		OR			
8	a)	For a $0.8\mu\text{m}$ process technology, for which $t_{ox} = 15\text{nm}$ and $\mu_n = 550\text{cm}^2/\text{Vs}$, find C_{ox} , $k'n$ and the over drive voltage required to operate a transistor having $W/L = 20$ in saturation with $I_D = 0.2\text{mA}$. What is the minimum value of V_{DS} needed?	CO2	PO1	08
	b)	Derive an expression for I_D when the n-channel MOSFET operating in (a) Triode region (b) Saturation region.	CO2	PO1	12
		UNIT - V			
9	a)	Analyze the condition to have a minimum non-linear distortion in a MOS amplifier, also obtain the equation for voltage gain in terms of g_m .	CO3	PO2	10
	b)	Derive expression for input resistance, output resistance, voltage gain and overall voltage gain of a common gate MOSFET amplifier	CO2	PO1	10
		OR			
10	a)	Deduce an expression for small signal voltage gain of enhancement MOSFET amplifier.	CO2	PO1	10
	b)	With a neat circuit diagram and equations, explain the working of a Wilson current source.	CO2	PO1	10
