

B.M.S. College of Engineering, Bengaluru-560019

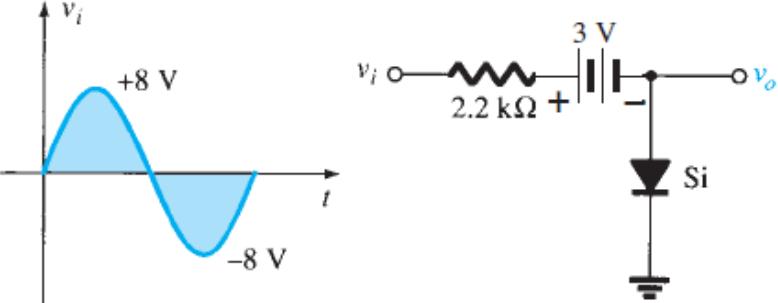
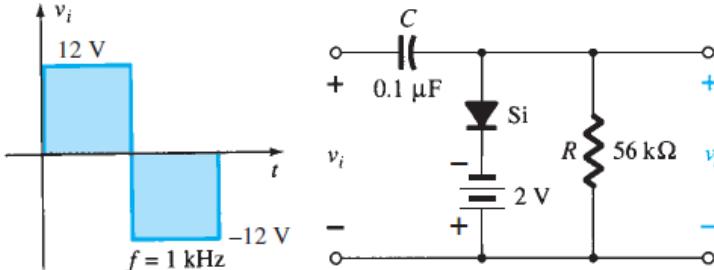
Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

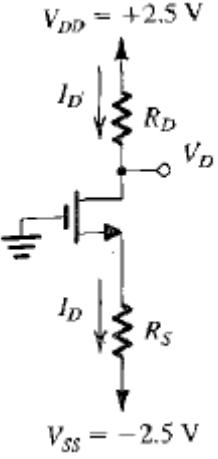
Branch: MD/EIE

Course Code: 23ES3PCAME



Course: Analog Microelectronics

Semester: III

Duration: 3 hrs.


Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	<p>Determine V_o for the circuit shown in figure 1.a</p> <p>Fig 1.a</p>	CO1	PO1	06
	b)	<p>Sketch V_o for the circuit shown in fig 1.b</p> <p>1.b</p>	CO1	PO1	06
	c)	<p>Derive an expression for Z_i, Z_o, Av for the voltage divider network without bypass capacitor.</p>	CO1	PO1	08
OR					
2	a)	<p>Briefly narrate the process of fixing the operating point using voltage divider bias network.</p>	CO1	PO1	06
	b)	<p>For the circuit shown in figure draw the output waveform</p>	CO1	PO1	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Determine r_e , V_b , V_e , Z_i , A_v for the circuit shown in figure 2.c	CO1	PO1
2023-24				
		<p>Fig 2.c</p>		08
UNIT - II				
3	a)	Explain with the help of mathematical expressions, how the negative feedback in amplifiers increases amplifier bandwidth and reduces distortion in amplifiers.	CO2	PO2
	b)	An amplifier with gain of -1000 and feedback of $\beta = -0.1$ has 20% change in gain, calculate the change in gain of the feedback amplifier.	CO2	PO2
	c)	For the voltage series feedback amplifier topology, obtain expression for A_v and R_{if} .	CO2	PO2
UNIT - III				
4	a)	Derive the equation for maximum efficiency of a series fed class A power amplifier and explain its operation.	CO3	PO3
	b)	For a class B amplifier providing a 20-V peak signal to a 16Ω load (Speaker) and a power supply of $V_{CC} = 30$ V, determine the input power, output power, and circuit efficiency.	CO3	PO3
	c)	Explain the operation of a transformer coupled push pull power amplifier.	CO3	PO3
UNIT - IV				
5	a)	Explain the operation of Enhancement MOSFET as V_{DS} is increased.	CO2	PO2
				07

	b)	Design the circuit of Fig.5.b so that the transistor operates at $ID = 0.4$ mA and $VD = +0.5$ V. The NMOS transistor has $Vt_s = 0.7$ V, $\mu_nC_{ox} = 100 \mu\text{A}/\text{V}^2$, $L = 1 \mu\text{m}$, and $W = 32 \mu\text{m}$. Neglect the channel-length modulation effect (i.e., assume that $X = 0$).	CO2	PO2	06
	c)	Explain the biasing of MOSFET using current source.	CO2	PO2	07
UNIT - V					
6	a)	Using the small signal circuit model obtain the expression for gm of a MOSFET.	CO3	PO3	10
	b)	Deduce the voltage gain of a CS amplifier with source resistance.	CO3	PO3	10
OR					
7	a)	Estimate the high frequency response of a CS amplifier.	CO3	PO3	10
	b)	Using the small signal equivalent circuit model obtain the voltage gain of a source follower.	CO3	PO3	10
