

B.M.S. College of Engineering, Bengaluru-560019

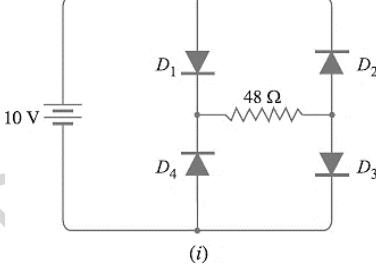
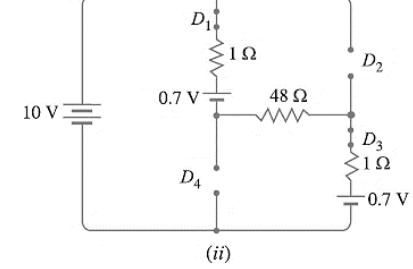
Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

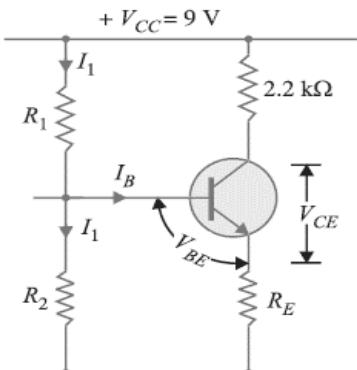
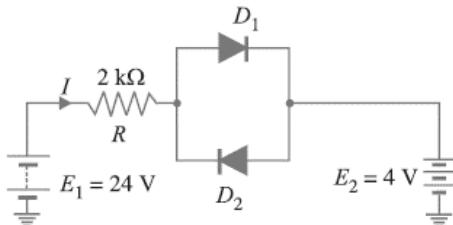
Programme: B.E.

Semester: III

Branch: MD/EIE



Duration: 3 hrs.

Course Code: 23ES3PCAME / 22ES3PCAME



Max Marks: 100

Course: Analog Microelectronics

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	With the circuit, discuss the working and plot the input and output waveform for a series negative clipper, Series positive clipper, biased shunt clipper.	CO2	PO2	08
	b)	Explain the working and the output waveform for Positive and negative clamping circuits, without and with biasing. considering square wave input.	CO2	PO2	08
	c)	Calculate the current through $48\ \Omega$ resistor in the circuit shown in Fig. 1c. Assume the diodes to be of silicon and forward resistance of each diode is $1\ \Omega$.	CO2	PO2	04
Fig. 1c					
OR					
2	a)	Explain the exact and approximate design of voltage divider bias for a transistor.	CO2	PO2	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	<p>In the circuit shown in Fig. 2(b), the operating point is chosen such that $I_C = 2\text{mA}$, $V_{CE} = 3\text{V}$. If $R_C = 2.2\text{k}\Omega$, $V_{CC} = 9\text{V}$ and $\beta = 50$, determine the values of R_1, R_2 and R_E. Take $V_{BE} = 0.3\text{V}$ and $I_1 = 10I_B$</p> <p>Fig. 2b</p>	CO3	PO2	06
	c)	<p>Determine the current I in the circuit shown in Fig. 2c. Assume the diodes to be of silicon and forward resistance of diodes to be zero.</p> <p>Fig. 2c</p>	CO3	PO2	04
UNIT - II					
3	a)	<p>Write the block diagram of the following indicating A, A_f and β.</p> <ol style="list-style-type: none"> Voltage series feedback amplifier Voltage shunt feedback amplifier Current series feedback amplifier Current shunt feedback amplifier. 	CO2	PO3	10
	b)	Derive an expression for Millers input and output capacitance	CO2	PO3	10
OR					
4	a)	<p>A voltage-series negative feedback amplifier has a voltage gain without feedback of $A = 500$, input resistance $R_i = 3\text{K}\Omega$, output resistance $R_o = 20\text{K}\Omega$ and feedback ratio $\beta = 0.01$. Calculate the voltage gain A_f, input resistance R_{if} and output resistance R_{of} of the amplifier with feedback.</p>	CO2	PO3	06
	b)	With a neat sketch of the gain-frequency response of an RC coupled amplifier, discuss the fall in gain at very low and at very high frequencies.	CO2	PO3	10
	c)	Describe the type of feedback used in Oscillators and list the applications of oscillators.	CO2	PO2	04

UNIT - III					
5	a)	Discuss the working principle of class B power amplifier circuit. Derive an equation for power conversion efficiency.	CO2	PO2	10
	b)	A class A transformer coupled power amplifier has zero signal collector current of 50 mA. If the collector supply voltage is 5 V, find (i) the maximum ac power output (ii) the power rating of transistor (iii) the maximum collector efficiency.	CO2	PO2	10
OR					
6	a)	Explain the working principle of a class A transformer coupled power amplifier circuit. Show that maximum power conversion efficiency is 50% for class A power amplifier	CO2	PO2	10
	b)	Define total harmonic distortion in power amplifiers. Calculate the harmonic distortion components for an output signal having fundamental amplitude of 3V, second harmonic amplitude of 0.5 V, third harmonic amplitude of 0.1 V, and fourth harmonic amplitude of 0.05 V. Determine the total harmonic distortion.	CO2	PO2	05
	c)	With a neat circuit diagram, waveforms, explain the working of complementary symmetry class B amplifier.	CO1	PO1	05
UNIT - IV					
7	a)	Explain the basic construction and operation of N-channel enhancement type MOSFET, and explain its characteristics.	CO2	PO2	10
	b)	Derive an expression for i_D when the n-channel enhancement MOSFET which operates in (a)Triode region. (b)Saturation region	CO2	PO2	10
OR					
8	a)	With relevant circuit discuss MOSFET as an amplifier and as a switch	CO2	PO2	12
	b)	Analyze the circuit shown in the figure 8b to determine the voltages at all nodes and the currents through all branches. Let $V_t = 1V$ and $k'n(W/L) = 1\text{mA/V}^2$. Neglect the channel length modulation effect (assume that lambda = 0).	CO2	PO2	08
Fig 8b					

UNIT - V					
	9	a)	Derive expression for input resistance, output resistance, voltage gain and overall voltage gain of a common drain MOSFET amplifier	CO2	PO2 10
		b)	Explain with equations the basic MOSFET as current source.	CO3	PO3 10
OR					
	10	a)	Write the T equivalent model of a MOSFET.	CO2	PO2 10
		b)	With a neat circuit of CS amplifier, derive the three different relationships for determining g_m of a MOSFET	CO2	PO2 10

REAPPEAR EXAMS 2024-25