

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

December 2023 Supplementary Examinations

Programme: B.E.

Branch: ES CLUSTER (EEE/ ETE /MD/EIE)

Course Code: 22ES3PCDCS

Course: Digital Circuits

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - I

1	a)	Find the minimized expression for the following function using tabular method $f(w,x,y,z) = \Pi M(0,4,7,5,9) \cdot \Pi d(1, 7, 13).$	10
	b)	Simplify the following expression using K-map. $F(A,B,C,D) = \Sigma m(1,2,4,11,13,14,15) + \Sigma d(0,5,7,8,10).$	06
	c)	Obtain the syntax for a Verilog module.	04

UNIT - II

2	a)	Design a 4-bit carry look adder and mention its advantages over conventional adder circuits.	10
	b)	Model a Verilog code for all the basic gates in different modules using data flow description.(any 5)	10

UNIT - III

3	a)	Implement $f(a,b,c,d) = \Sigma m(0,1,5,6,7,10,15)$ using 4:1 Multiplexer.	05
	b)	Implement the following function $f1(x,y,z) = \Sigma m(1,2,3,7)$ and $f2 = \Sigma m(0,1,2,6)$ using 3x4x2 PLA. Write the PLA table.	08
	c)	Design and write VERILOG code to implement the functionality of a 1-Bit comparator using data flow description.	07

UNIT - IV

4	a)	Explain the working of a positive edge triggered D-flip-flop.	06
	b)	Write the characteristic equations and excitation tables for the following flip-flops. i) J-K Flip-flop ii) D Flip-flop	07
	c)	Design and write Verilog code to implement the functionality for a JK Flip Flop.	07

OR

5	a)	Explain the working of JK Flip-flop using NAND gates with its truthtable. What is the problem associated with the circuit. Explain how it can be avoided.	08
---	----	---	----

b) Conclude on the time period of the clock (clk) generated by the following code segment? **05**

```
initial
#2 clk = 1'b0;
always
#10 clk = ~clk;
```

c) Convert JK flip-flop to AB flip-flop. Functional table of AB flip-flop is described in the table below. **07**

A	B	Q^+
0	0	0
0	1	Q'
1	0	Q
1	1	1

UNIT - V

6 a) Design and write VERILOG code to implement the functionality of a 4-bit Ripple Carry Adder using and Structural Architecture. **10**

b) Design a 3-bit synchronous up-counter using D Flip-flop. **10**

OR

7 a) Design and write Verilog code for 16-to-1 Multiplexer using structural modeling using behavioral modeling of 4-to-1 Multiplexer. **10**

b) Design a Universal shift Register for the following condition:
The CLRb input is asynchronous and active low and overrides all the other inputs. All other states changes following the rising edge of the clock. If the control inputs S1=S0=1, the register is load in parallel. If S1=1 and S0=0, the register is shifted right and SDR (Serial data right) is shifted into Q3. If S1=0 and S0=1, the register is shifted left and SDL is shifted into Q0. If S1=S0=0, no action occurs.
