

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

Branch: ES CLUSTER (EEE/ETE/MD/EIE)

Course Code: 22ES3PCDCS

Course: Digital Circuits

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1	a) Obtain minimal sum and minimal product for the Boolean function $f(a,b,c,d) = \sum m(2,4,5,6,10) + \sum d(12,13,14,15)$ using Karnaugh Map. 08
	b) Use Tabulation method to find a minimal sum for the function $f(a,b,c,d) = \sum m(0,2,4,5,7,8,9,15)$ 08
	c) What are the different data types available in Verilog? 04

UNIT - II

2	a) Explain the working of BCD adder with appropriate diagrams. 12
	b) Write a Verilog code that represents a full subtractor using dataflow description. 08

UNIT - III

3	a) Implement the function $f(a,b,c) = \sum m(0,1,2,7)$ using 4:1 Mux. Take i) ab ii) bc as select lines 06
	b) Implement the functions f1 and f2 using a 3x4x2 PLA with true/complemented outputs. Also write the PLA table. Given: $f1(a,b,c) = \sum m(0,1,3,5)$ $f2(a,b,c) = \sum m(0,2,3,4)$ 08
	c) Write a Verilog dataflow code to implement an n-bit Binary to Gray code converter. 06

UNIT - IV

4	a) Derive the characteristic equation of i) SR Flip flop ii) JK Flip flop 06
	b) Explain the working of JK Master Slave Flip flop with neat logic diagram and timing diagrams. 08
	c) Write a Verilog code to implement the functionality of D Flipflop having an active low reset (rst) and active low preset (pr). Assume the flip flop to be positive edge triggered. 06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

OR

5 a) Design a positive edge triggered JK Flip flop using a positive edge triggered D Flip flop. **05**

b) Explain the working of a positive edge triggered D Flip flop with an appropriate logic diagrams. **08**

c) Write a behavioural Verilog code to implement the functionality of a JK Flip flop **07**

UNIT - V

6 a) Design a Mod 10 asynchronous counter using positive edge triggered T flip-flops. Draw the timing diagrams and also write the counting sequence. **07**

b) With relevant logic diagrams and examples explain different modes of operation of 4-bit Unidirectional shift register for both parallel and serial data transfer. **08**

c) Write a gate-level Verilog code for a full adder. **05**

OR

7 a) Design a synchronous Mod 5 counter for the following counting sequence 0,2,3,5,7,0, 2.... and repeat. Use D flip flops having outputs $Q_AQ_BQ_C$. **08**

b) Draw the logic diagram of a 3-bit shift register using D Flip-flops. Show how it can be used as a ring counter and as a twisted ring counter. Write the counting sequence and indicate their mod numbers. **07**

c) Write a gate-level Verilog code for a 2x1 Mux. **05**
