

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2023 Semester End Make-Up Examinations

Programme: B.E.

Branch: ES CLUSTER (EEE/ ETE /MD/EIE)

Course Code: 22ES3PCDCS

Course: Digital Circuits

Semester: III

Duration: 3 hrs.

Max Marks: 100

Date: 10.08.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1	a) Design a logic circuit for the function $F(W, X, Y, Z) = \prod M(1, 3, 4, 11) + \prod d(2, 7, 8, 12, 14, 15)$ using minimum number gates	08
	b) Simplify the following Boolean function using tabulation method. $F(A, B, C, D) = \sum m(0, 1, 2, 5, 6, 7, 8, 9, 10, 14)$	08
	c) Describe different Verilog Operators	04

UNIT - II

2	a) Design and explain the operation of 1-digit BCD adder	10
	b) Design a full subtractor and hence describe the behavior using data flow description	06
	c) Explain Data flow modeling	04

UNIT - III

3	a) Design a 3-bit binary to gray code converter and hence describe the behavior using data flow description	08
	b) Design the following Boolean functions using a suitable PLA.	06

$$F_1(a, b, c) = \Sigma m(0, 1, 2, 5, 7)$$

$$F_2(a, b, c) = \Sigma m(3, 4, 5)$$

$$F_3(a, b, c) = \Sigma m(3, 4, 5, 6)$$

	c) Design a BCD-Decimal decoder using 2 to 4 decoders	06
--	---	----

UNIT - IV

4	a) Explain the working of a positive edge triggered D-flip flop.	06
	b) Convert JK-FF to SR-FF	06
	c) Write a Verilog code for JKFF with active low preset and clear	08

OR

5	a) What is race around condition? Explain different methods to eliminate it.	08
	b) Realize T-FF using D-FF	06

c) Write a Verilog code for T-FF

06

UNIT - V

6 a) Write a Verilog code for 4-bit Ring counter 05
b) Design a synchronous counter using D-FFs for the sequence 08
0, 1, 2, 4, 6, 0, 1,.....
c) With a neat diagram explain the operation of 4-bit universal shift register 07

OR

7 a) Write a Verilog code for 4-bit Johnson counter. 06
b) Design 2-bit up-down counter using T-FFs 08
c) Design a MOD- 10 Ripple counter 06
