

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: ES CLUSTER (MD/EE/EI/ET)

Duration: 3 hrs.

Course Code: 22ES3PCDCS

Max Marks: 100

Course: Digital Circuits

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Write all the prime implicants and obtain minimal sum for the Boolean function $f(a,b,c,d) = \sum m(0,2,5,7,8,10,13,15) + \sum d(1,4,11,14)$ using Karnaugh Map.	CO1	PO2	05
		b)	Use Tabulation method to find all the prime implicants for the function $f(a,b,c,d) = \sum m(3,4,5,7,10,12,14,15) + \sum d(2)$	CO1	PO2	07
		c)	Discuss any 3 important data types available in Verilog. Give examples for each.	CO1	PO2	08
OR						
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	2	a)	A 4-bit binary number is represented as $A_3A_2A_1A_0$, where A_3 is MSB and A_0 is LSB. Design a logic circuit that will produce a HIGH output whenever the binary number is greater than or equal to 6 and less than or equal to 12. Obtain the output expression using K-map.	CO1	PO2	10
		b)	Simplify the given expression using K-map to get the minimal sum expression and build the digital system using logical gates. $f(w,x,y,z) = \sum m(3,4,6,9,11,12,13,14,15)$	CO1	PO2	10
UNIT - II						
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	3	a)	Write a Verilog code that represents a full adder using dataflow description.	CO2	PO3	08
		b)	Explain the working of BCD adder with appropriate diagrams.	CO2	PO3	12
OR						
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	4	a)	Design 3-bit carry look ahead adder with expressions.	CO2	PO3	10
		b)	Develop Verilog code for the logic circuit shown in Figure 2c using dataflow modeling.	CO2	PO3	10

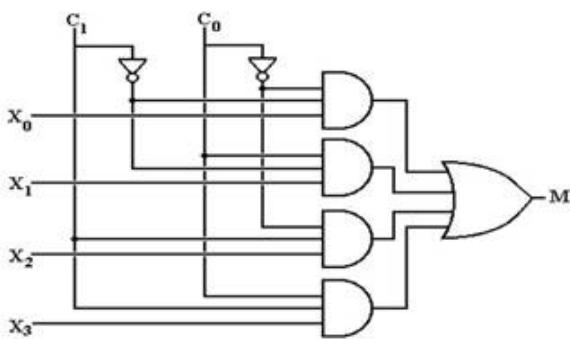


Figure 2c

UNIT - III

5	a)	Implement the function $f(a,b,c) = \sum m(0,1,4,7)$ using 4:1 Mux. Take i) ab ii) bc as select lines	CO2	PO3	06
	b)	Implement the functions f_1 and f_2 using a $3 \times 4 \times 2$ PLA with true/complemented outputs. Also write the PLA table. Given: $f_1(a,b,c) = \sum m(0,1,3,5)$ $f_2(a,b,c) = \sum m(3,5,7)$	CO2	PO3	08
	c)	Construct a 4 to 16 line decoder by appropriately configuring 3 to 8 line decoders.	CO2	PO3	06

OR

6	a)	Construct a 16-to-1 line multiplexer using the 4-to-1 line multiplexers.	CO2	PO3	10
	b)	Design a 3-bit gray to binary code converter and describe the behavior using data flow description.	CO2	PO3	10

UNIT - IV

7	a)	Derive the characteristic equation of i)T Flip flop ii)JK Flip flop	CO3	PO3	06
	b)	Explain the working of JK Master Slave Flip flop with neat logic diagram and timing diagrams.	CO3	PO3	08
	c)	Write a Verilog code to implement the functionality of a binary to Gray code converter.	CO3	PO3	06

OR

8	a)	Design a positive edge triggered JK Flip flop using a positive edge triggered SR Flip flop.	CO3	PO3	05
	b)	Explain the working of a positive edge triggered D Flip flop with an appropriate logic diagrams.	CO3	PO3	08
	c)	Write a behavioural Verilog code to implement the functionality of a 4 bit synchronous counter.	CO3	PO3	07

UNIT - V

9	a)	Design a Mod 8 asynchronous up counter using positive edge triggered T flip-flops. Draw the timing diagrams and also write the counting sequence.	CO3	PO3	05
---	----	---	-----	-----	-----------

		b)	With relevant logic diagrams and examples explain different modes of operation of 4-bit Unidirectional shift register for both parallel and serial data transfer.	CO3	PO3	10
		c)	Write a structural Verilog code for a a 4:1 Mux.	CO3	PO3	05
			OR			
	10	a)	Design a synchronous Mod 5 counter for the following counting sequence 0,3,7,6,5,0.... and repeat. Use D flip flops having outputs $Q_3Q_2Q_1$.	CO3	PO3	08
		b)	Draw the logic diagram of a 3 bit shift register using D Flip-flops. Show how it can be used as a ring counter and as a twisted ring counter. Write the counting sequence for both.	CO3	PO3	08
		c)	Write a structural Verilog code for a full adder.	CO3	PO3	04
