

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

Programme: B.E.

Branch: ES Cluster (EEE/ ECE)

Course Code: 19ES3CCDEC

Course: Digital Electronic Circuits

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Simplify the given function using K-Map $f(a,b,c,d) = \Sigma m(1,2,4,11,13,14,15) + d(0,5,7,8,10)$	CO1	PO1	10
	b)	Simplify the following Boolean function using Quine McCluskey method. $F(A,B,C,D) = \Sigma m(0,2,6,7,8,9,10) + d(3,5,15)$	CO1	PO2	10
UNIT - II					
2	a)	Design and implement a look ahead carry adder. How is it advantageous over Binary ripple adder?	CO2	PO1	10
	b)	Implement a full subtractor using 1:4 DMUX with active low enable input and active low outputs.	CO2	PO2	10
OR					
3	a)	Design a combinational circuit using a ROM. The circuit accepts a 3-bit number and generates an output binary number equal to the square of the input number.	CO2	PO1	10
	b)	Realize a full adder with inputs as a,b,c as per the design protocol.	CO2	PO2	10
UNIT - III					
4	a)	Derive the characteristic equation and excitation table for the following flip i) J K Flip flop ii) T flip flop	CO2	PO1	10
	b)	Design a synchronous Mod-6 counter with the following sequence 0,2,3,6,5,1,0....., and repeat. Use D flip-flops. Check whether the counter is self-correcting.	CO2	PO1	10
OR					
5	a)	Draw a 4-bit shift register using D flip-flops. Show how it can be used as a ring and twisted ring counter.	CO2	PO2	06
	b)	Design a counter using T flip-flops with the following binary sequence 0,4,2,1,6 and repeat.	CO3	PO2	10
	c)	Derive the characteristic equation for T flip-flop.	CO2	PO3	04

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - IV					
6	a)	Design a Mealy type sequence detector to detect a serial input sequence '1010' using D flip-flop and overlapping. Assume X as the input and Z as the output with the input string X=01101010.	CO3	PO2	10
	b)	Design a Moore type sequence detector to detect a serial input sequence of '101' using D flip-flop and overlapping.	CO3	PO2	10
UNIT - V					
7	a)	Explain the working principle of CMOS inverter logic circuit with logic diagram and truth table.	CO4	PO1	10
	b)	Explain any five characteristics of Digital ICs.	CO4	PO2	10

SUPPLEMENTARY EXAMS 2024