

January / February 2025 Semester End Main Examinations

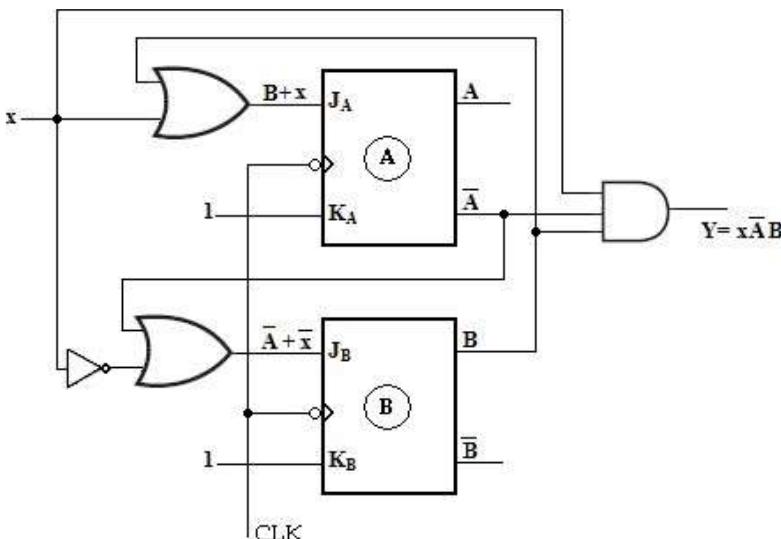
Programme: B.E.

Semester: III

Branch: ES CLUSTER (EC/EE/EI/ML/ET)

Duration: 3 hrs.

Course Code: 19ES3CCDEC


Max Marks: 100

Course: Digital Electronic Circuits

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I						
				CO	PO	Marks
1	a)	Reduce the following circuit to minimal form		<i>CO1</i>	<i>PO2</i>	06
	b)	Determine the simplified form for the function USING k-Map $F(a, b, c, d) = \sum m(0, 2, 4, 7, 8, 10, 12)$. Realize the simplified expression using logic gates with SOP and POS form.		<i>CO1</i>	<i>PO2</i>	14
		OR				
2	a)	Design a logic circuit having 3 inputs, A, B, C will have its output HIGH only when a majority of the inputs are HIGH.		<i>CO1</i>	<i>PO2</i>	10
	b)	Simplify using tabulation method $F(A, B, C, D) = \sum m(2, 3, 7, 9, 11, 13) + \sum d(1, 10, 15)$		<i>CO1</i>	<i>PO2</i>	10
UNIT - II						
3	a)	Design a 3 bit carry look ahead adder circuit.		<i>CO2</i>	<i>PO3</i>	10
	b)	A combinational circuit is defined by the functions $F_1(A, B, C) = \sum m(3, 5, 6, 7)$ $F_2 = (A, B, C) = \sum m(0, 2, 4, 7)$ Implement the circuit with a PLA having three inputs, four product terms and two outputs.		<i>CO2</i>	<i>PO3</i>	10

OR																				
4	a)	Implement the following Boolean function with a 4:1 Mux with yz as select inputs $f(w, x, y, z) = \sum m(1, 3, 4, 11, 12, 14, 15)$	<i>CO2</i>	<i>PO3</i>	10															
	b)	Consider a 4-bit adder circuit. Design a circuit that will convert the adder to a binary coded decimal form.	<i>CO2</i>	<i>PO3</i>	10															
UNIT - III																				
5	a)	Draw the circuit of JK master slave flipflop and explain when the input is 10 and 11. Show the timing diagram for the same.	<i>CO3</i>	<i>PO3</i>	08															
	b)	Design a 4-bit ripple down counter using T flipflops.	<i>CO3</i>	<i>PO3</i>	06															
	c)	Design a shift register using multiplexers and D flipflops to perform the following operations.	<i>CO3</i>	<i>PO3</i>	06															
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <th>S1</th><th>S0</th><th>operation</th></tr> <tr> <td>0</td><td>0</td><td>Circular right shift</td></tr> <tr> <td>0</td><td>1</td><td>Hold</td></tr> <tr> <td>1</td><td>0</td><td>Left shift</td></tr> <tr> <td>1</td><td>1</td><td>Parallel load</td></tr> </table>	S1	S0	operation	0	0	Circular right shift	0	1	Hold	1	0	Left shift	1	1	Parallel load			
S1	S0	operation																		
0	0	Circular right shift																		
0	1	Hold																		
1	0	Left shift																		
1	1	Parallel load																		
OR																				
6	a)	Convert JK to D, JK to SR flip flop	<i>CO3</i>	<i>PO3</i>	08															
	b)	Design a 3-bit synchronous counter to count the sequence 0, 2, 4, 6. The unused states should reset the counter to zero. Use T flipflop	<i>CO3</i>	<i>PO3</i>	12															
UNIT - IV																				
7	a)	Define FSM. Differentiate between Mealy and Moore models.	<i>CO3</i>	<i>PO3</i>	08															
	b)	A sequential circuit has one input and one output. The state diagram is shown below. Design the sequential circuit with D-Flip-Flops	<i>CO3</i>	<i>PO3</i>	12															
		<pre> graph LR 00((00)) -- "0/0" --> 00 00 -- "1/0" --> 01((01)) 01 -- "0/0" --> 00 01 -- "0/0" --> 11((11)) 11 -- "1/1" --> 11 11 -- "1/0" --> 10((10)) 10 -- "0/1" --> 10 10 -- "1/0" --> 01 </pre>																		

		OR			
8	a)	Determine the state table and state diagram for the circuit shown	CO3	PO3	10
	b)	Design a Mealy state diagram to detect the sequence "101" for both overlapping and non-overlapping methods.	CO3	PO3	10
UNIT - V					
9	a)	Explain the terms i) Rise time and fall time ii) Propagation delay iii) Noise Margin	CO1	PO2	08
	b)	Explain the standard TTL logic circuit and explain its operation	CO1	PO2	08
	c)	Draw the circuit of CMOS NOT gate	CO1	PO2	04
OR					
10	a)	Compare TTL and CMOS ICs in terms of characteristics	CO1	PO2	08
	b)	Draw the circuit of CMOS NAND gate explain with truth table	CO1	PO2	08
	c)	A NAND gate has the following characteristics. $I_{OH(\max)} = 2 \text{ mA}$ $I_{OL(\max)} = 20 \text{ mA}$ $I_{IH(\max)} = 20 \mu\text{A}$ $I_{IL(\max)} = 0.5 \text{ mA}$ Determine fanout for high and low state.	CO1	PO2	04
