

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

May 2023 Semester End Main Examinations

Programme: B.E.

Branch: ES CLUSTER(ECE/EE/ML/ET/EI)

Course Code: 19ES3CCDEC

Course: Digital Electronic Circuits

Semester: III

Duration: 3 hrs.

Max Marks: 100

Date: 12.05.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1	a)	Simplify the Boolean function $f(a,b,c,d) = \Sigma(0,1,2,3,8,9)$ using Tabulation method.	08
	b)	Implement XOR gate using only NOR gates.	04
	c)	Simplify the following expression using K-map and realize the logic using only NAND gates.	08

$f(A,B,C,D) = \Sigma m(2,3,4,5,13,15) + \Sigma d(8,9,10,11)$

UNIT - II

2	a)	Explain the operation of Carry look ahead adder with relevant logic diagram and equations.	08
	b)	Explain the operation of 3 to 8 line decoder.	06
	c)	Implement the Boolean expression $f(a,b,c) = \Sigma(1,4,5,7)$ using 4:1 Multiplexer.	06

OR

3	a)	Design a two bit magnitude comparator and implement with suitable logic gates.	10
	b)	Write Short notes on (i) Read Only Memories (ROMs) (ii) Programmable Logic Arrays (PLAs).	10

UNIT - III

4	a)	What is a flip-flop? Explain the operation of clocked RS flip-flop.	06
	b)	Explain the operation of Master-Slave JK flip-flop.	06
	c)	Convert the following (i) SR flip-flop to D flip-flop (ii) JK flip-flop to T flip-flop.	08

OR

5	a)	Explain the SISO Shift register operations with suitable logic diagram.	06
	b)	Design a Modulo 6 ripple counter using T flip-flops.	07
	c)	Design a synchronous Modulo 6 counter using D-flip-flops to generate the sequence (0, 2, 3, 5, 6, 1, 0.....)	07

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - IV

6 a) Analyze the Moore sequential circuit shown in fig.1 and construct the transition table, State table and State diagram.

12

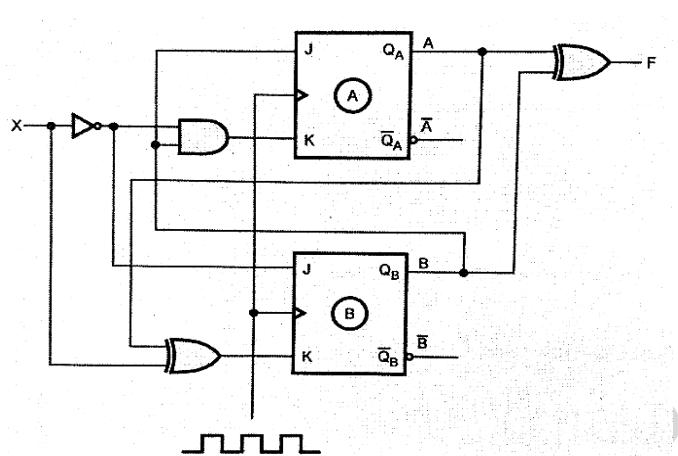


fig.1

b) Design the sequential circuit using D-flip-flops for the state diagram of the sequential circuit shown in figure 2 which has one input and one output.

08

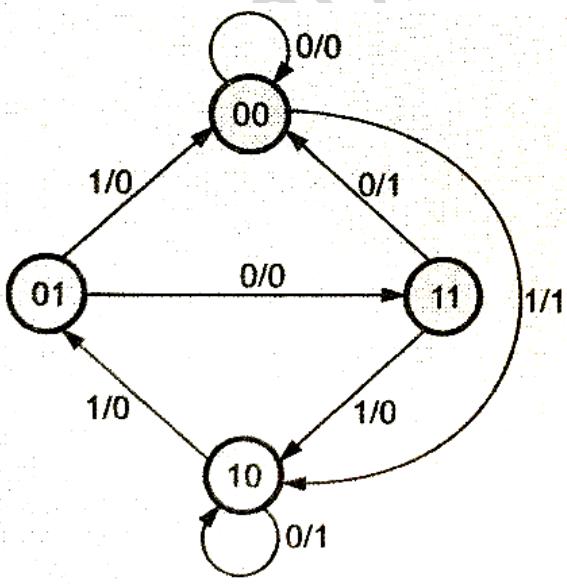


figure 2

UNIT - V

7 a) With a neat circuit diagram explain the operation of two input TTL NAND gate. **06**
 b) With neat diagrams explain the operation of (i) CMOS NAND Gate (ii) CMOS NOR gate. **08**
 c) Compare TTL and CMOS logic families. **06**
