

--	--	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June / July 2024 Semester End Make-Up Examinations

Programme: B.E.

Semester: III

Branch: ES Cluster (EEE/ET/ECE/EIE/MD)

Duration: 3 hrs.

Course Code: 23ES3PCDEC

Max Marks: 100

Course: Digital Electronic Circuits

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Using Karnaugh maps, determine all the prime implicants and prime implicants for the function f given by $f(a,b,c,d)=\prod(1,2,3,4,9,10)+\prod d(0,14,15)$. Find the minimal sum to realize f using only NAND gates.			CO1	PO1	10
		b)	Using Quine Mc-Cluskey's Method, obtain a minimal sum for the boolean function F given by $F(a,b,c,d)=\sum m(2,3,7,9,11,13)+\sum d(1,10,15)$.			CO1	PO1	10
	UNIT - II							
	2	a)	Design and implement a 4-bit look ahead carry adder. How is it advantageous over Binary ripple adder.			CO2	PO2	10
		b)	Design a binary to gray converter for a 4-bit number.			CO2	PO2	10
	OR							
	3	a)	Realize the Boolean functions $f_1(x,y,z)=\sum m(0,1,3,5)$ and $f_2(x,y,z)=\sum m(3,5,7)$ using a $3 \times 4 \times 2$ PLA. Write the PLA table.			CO2	PO2	10
		b)	Design a system to accept a 4 bit input ABCD and generate an output whenever the input code is divisible by either 3 or 5 and represent the output using 4:1 multiplexer. Take C,D as select lines.			CO2	PO2	10
	UNIT - III							
	4	a)	Convert i) JK flip-flop to SR Flip-flop ii) D flip-flop to T flip-flop			CO2	PO2	10
		b)	Design a synchronous Mod-6 counter with the following sequence 0,2,3,6,5,1,0....., and repeat. Use D flip-flops.			CO3	PO3	10
OR								

	5	a)	Draw a 4-bit shift register using D flip-flops. Show how it can be used as a ring and twisted ring counter.	CO2	PO2	06
		b)	Design a counter using T flip-flops with the following binary sequence 0,4,2,1,6 and repeat.	CO3	PO3	10
		c)	Derive the characteristic equation for T flip-flop.	CO2	PO2	04
			UNIT - IV			
	6	a)	Design a synchronous circuit using positive edge triggered JK flip-flops with minimal combinational gating to generate the following sequence. 0-1-2-0 if the input X=0 and 0-2-1-0 if the input X=1 Provide an output which goes high to indicate non-zero states in the 0-1-2-0 sequence.	CO3	PO3	10
		b)	Design a sequential circuit for the following state diagram using JKFF	CO3	PO3	10
			<pre> graph LR 00((00)) -- "0/0" --> 00 00 -- "1/0" --> 01((01)) 01 -- "1/0" --> 00 01 -- "0/1" --> 10((10)) 10 -- "1/0" --> 10 10 -- "0/1" --> 11((11)) 11 -- "1/0" --> 11 11 -- "0/1" --> 00 </pre>			
			UNIT - V			
	7	a)	Implement CMOS NOT, NAND and NOR gates.	CO1	PO1	10
		b)	Explain any five characteristics of Digital ICs.	CO1	PO1	10
