

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

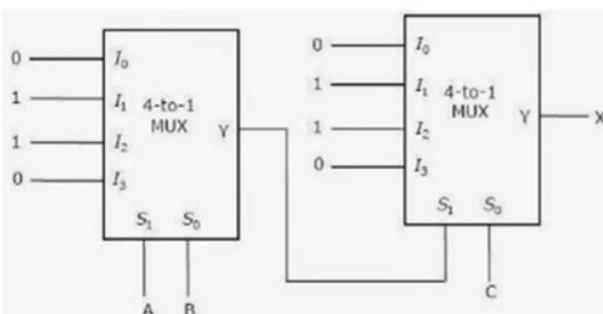
June 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: EEE/ETE/EIE/MD

Duration: 3 hrs.

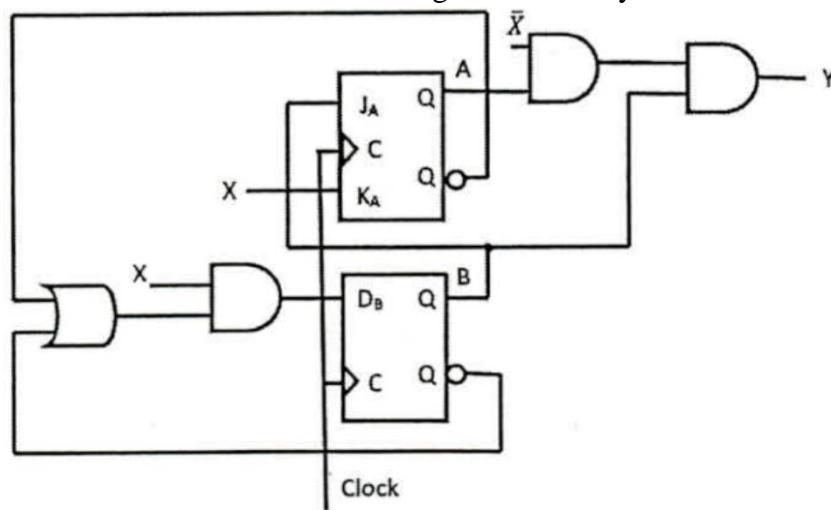

Course Code: 23ES3PCDEC

Max Marks: 100

Course: Digital Electronic Circuits

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

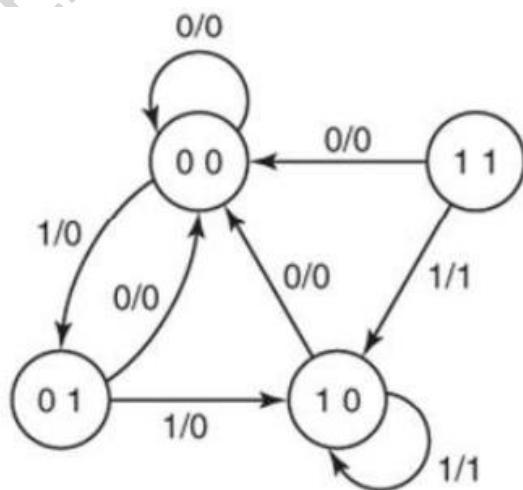
			UNIT - I			
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)				
			CO	PO	Marks	
	1	a)				
	CO1	PO3	06			
	b)	Simplify the function $f(A, B, C, D) = ABC + AB + A'BC'D' + BC'$ using Karnaugh map.	CO1	PO2	06	
	c)	Simplify the following switching function using tabular method and identify the Prime implicants and essential prime implicants $f(p,q,r,s) = \sum m(4,5,8,9,12,13) + \sum d(0,3,7,10,11)$	CO1	PO2	08	
	OR					
	2	a)	Find the minimized expression for the following function using tabular method $F(W,X,Y,Z) = \sum m(0,3,5,6,7,10,12,13) + \sum d(2,9,15)$.	CO1	PO3	10
			Simplify the following expression using K-map. $F(W,X,Y,Z) = \prod m(0,3,4,7,8,10,12,14) + \prod d(2,6)$.	CO1	PO2	05
			Three input variables A, B and C are available. The output is equal to '1' if the input variables have more 1's than 0's. The output is '0' otherwise. Derive the expression and write the circuit for the same.	CO1	PO2	05
UNIT - II						
3	a)	Implement the following functions using a 3x4x2 PLA, with both true and complemented outputs: $f1(a,b,c) = \sum m(0,1,3,5)$ $f2(a,b,c) = \sum m(0,2,3,4)$	CO2	PO3	08	
		Design 2-Bit Magnitude comparator	CO2	PO3	08	


	c)	Implement binary full subtractor using 3:8 decoder	CO2	PO3	04															
		OR																		
4	a)	Design a single digit BCD adder to add given two decimal numbers.	CO2	PO3	08															
	b)	Analyse the circuit shown in Figure 2b, find the expression for X and also write the truth table.	CO2	PO3	04															
		<p>Figure 2b.</p>																		
	c)	Design a 4 bit Binary to Grey Code Converter	CO2	PO3	08															
		UNIT - III																		
5	a)	Explain the working of JK M/S flip flop with the help of a neat diagram & waveforms.	CO3	PO2	10															
	b)	Design a 4 bit shift register using edge triggered D flip-flops to operate as indicated in the table below	CO3	PO3	10															
		<table border="1"> <thead> <tr> <th colspan="2">Mode</th> <th>Register Operation</th> </tr> </thead> <tbody> <tr> <td>0</td> <td>0</td> <td>Hold(No Change)</td> </tr> <tr> <td>0</td> <td>1</td> <td>Shift Right</td> </tr> <tr> <td>1</td> <td>0</td> <td>Shift Left</td> </tr> <tr> <td>1</td> <td>1</td> <td>Parallel</td> </tr> </tbody> </table>	Mode		Register Operation	0	0	Hold(No Change)	0	1	Shift Right	1	0	Shift Left	1	1	Parallel			
Mode		Register Operation																		
0	0	Hold(No Change)																		
0	1	Shift Right																		
1	0	Shift Left																		
1	1	Parallel																		
		OR																		
6	a)	An PN flip-flop has four operations: complement, set to 1, clear to 0 and no change when inputs P and N are 00, 01, 10, and 11 respectively.	CO3	PO3	10															
		i. Tabulate the characteristic table , ii. Derive the characteristic equation. iii. Tabulate the excitation table. iv. Show how the JK flip-flop can be converted to a PN flip-flop.																		
	b)	Design synchronous counter for sequence: $0 \rightarrow 1 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 7 \rightarrow 0$, using T flip-flop. Is the counter self-starting?	CO3	PO3	10															

UNIT - IV

7 a) Design the following state machine using TFF. Write state diagram and State table. The machine is of a single input and single output type. Assume A=00, B=01, C=10, D=11.

Present State	Next State		Output Z	
	X=0	X=1	X=0	X=1
A	B	C	0	0
B	A	A	0	1
C	D	A	0	1
D	A	D	0	1


b) Analyze the synchronous sequential circuit shown below. Obtain its state table and state diagram. Identify the machine.

OR

8 a) Design a Mealy Model for the sequence 1101 with non-overlapping condition using D- flip flops.

b) Construct the excitation table, transition table, state table and sequential circuit with T-Flip flops for the following state diagram.

CO3 PO3 **10**

CO3 PO3 **10**

CO3 PO3 **10**

CO3 PO3 **10**

			UNIT - V			
	9	a)	Explain the following characteristics for digital IC's: i. Noise Margin ii. Propagation delay iii. Power dissipation iv. Fan-out	CO2	PO1	10
		b)	Design and explain the operation of CMOS 2 input NAND and NOR gates.	CO2	PO1	10
			OR			
	10	a)	Explain the working of a TTL NAND gate with the help of a neat circuit diagram.	CO2	PO1	10
		b)	Suppose, for a family of logic components, VIL is 0.6V and VIH is 1.2V. What voltages are required for VOL and VOH to provide a noise margin of 0.2V	CO2	PO1	05
		c)	Make a comparison between TTL and CMOS families with respect to some parameters	CO2	PO1	05
