

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: EEE/ETE/EIE/MD

Duration: 3 hrs.

Course Code: 23ES3PCDEC

Max Marks: 100

Course: Digital Electronic Circuits

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Simplify the Boolean function using K-map and write the circuit diagram for the same. $F(w, x, y, z) = \sum m(1, 3, 7, 11, 15) + \sum d(0, 2, 5)$	CO1	PO2	05
	b)	Simplify the Boolean function $F(A, B, C, D) = \sum m(1, 5, 6, 12, 13, 14) + \sum d(2, 4)$ using Tabular method.	CO1	PO2	10
	c)	Solve the given expressions with Boolean simplification: i) $C + \overline{(BC)}$ ii) $\overline{AB}(\overline{A} + B)(\overline{B} + B)$	CO1	PO2	05
OR					
2	a)	Implement the given function $F = AB + CD$ using only NAND gates	CO1	PO2	05
	b)	Using the Tabulation method and prime implicant table reductions, determine the minimal sum for the Boolean function $f(A, B, C, D) = \sum m(1, 4, 6, 7, 8, 9, 10, 11, 15)$	CO1	PO2	10
	c)	Design a logic circuit for the Boolean function $F(A, B, C, D) = \sum m(0, 1, 2, 5, 8, 9, 10)$ using Product of Sum form.	CO1	PO2	05
UNIT - II					
3	a)	Illustrate a 4-bit carry look ahead adder and mention its advantages over conventional adder circuits.	CO2	PO2	10
	b)	Implement the following function $F(abcd) = \sum m(0, 1, 2, 4, 6, 9, 12, 14)$ using 4:1 mux considering A & B as select lines.	CO2	PO2	10
OR					
4	a)	Design a single digit BCD adder to add given two decimal numbers.	CO2	PO2	10
	b)	Obtain the minterm expression for the following function using a PROM, i) $f_1(A, B, C) = A \cdot B + B' \cdot C$ ii) $f_2(A, B, C) = (A + B' + C) \cdot (A' + B)$ iii) $f_3(A, B, C) = A + B \cdot C$	CO2	PO2	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III					
5	a)	Derive the characteristic equation and excitation table for the following flip flops. i) J K Flip flop ii) T flip flop	CO2	PO2	10
	b)	Justify how the race around condition can be eliminated using Master slave JK flip flop with suitable timing diagram.	CO2	PO2	10
OR					
6	a)	Define Shift register. Explain the following operations of shift registers. i) SISO ii) SIPO iii) PIPO iv) PISO	CO2	PO2	10
	b)	Design a MOD-6 asynchronous up counter using JK flip flop. Write the timing diagram for the same.	CO2	PO2	10
UNIT - IV					
7	a)	Design a synchronous circuit using positive edge triggered JK flip flop with minimal combinational gating to generate the following sequence. i) 0-1-2-0 if input X=0 ii) 0-2-1-0 if X=1 Provide an output which goes high to indicate the non-zero states in the 0-1-2-0.	CO3	PO3	12
	b)	Differentiate between Mealy and Moore Models.	CO3	PO3	08
OR					
8	a)	Design synchronous MOD-6 counter using clocked JK flip flops to sequence 0-2-3-6-5-1	CO3	PO3	12
	b)	Draw the state diagram of a Moore machine to output a “1” if the input has been 1 for three consecutive clock cycles	CO3	PO3	08
UNIT - V					
9	a)	With a neat circuit diagram, explain the working of 2 input TTL NAND gate	CO2	PO1	10
	b)	Define the following. i) Fan-in ii) Fan-out iii) Propagation delay iv) Power dissipation	CO2	PO1	10
OR					
10	a)	Explain the working of 2 input CMOS NOR gates in detail.	CO2	PO1	10
	b)	Elaborate the characteristics of CMOS and TTL logics and compare the same.	CO2	PO1	10