

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

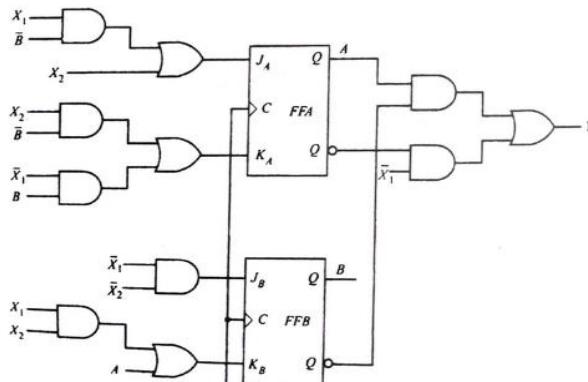
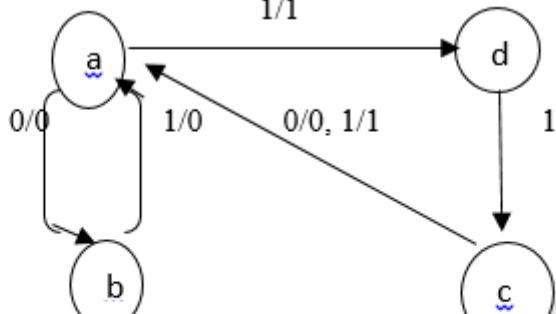
Programme: B.E.

Semester: III

Branch: ES Cluster (EEE/ET/EIE/MD)

Duration: 3 hrs.

Course Code: 23ES3PCDEC



Max Marks: 100

Course: Digital Electronic Circuits

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Represent the following functions in minterm and maxterms. i) $F = A + BC$ ii) $F = XY + \bar{X}Z$	<i>CO1</i>	<i>PO1</i>	05
	b)	Find the prime implicants and essential prime implicants for the following function using K-map technique $f(A, B, C, D) = \sum m(0, 2, 5, 7, 8, 10, 13, 15) + \text{dc}(1, 4, 11, 14)$	<i>CO1</i>	<i>PO1</i>	07
	c)	Simplify the following Boolean function by using Quine-McClusky method and determine the prime implicants $F(A, B, C, D) = \sum (1, 4, 6, 7, 8, 9, 10, 11, 15)$	<i>CO1</i>	<i>PO1</i>	08
UNIT - II					
2	a)	Implement the given Boolean function using 4 : 1 multiplexer $F(A, B, C) = \sum (0, 4, 5, 6)$	<i>CO2</i>	<i>PO2</i>	04
	b)	Implement the following two Boolean functions with a PLA: $F1(A, B, C) = \sum(0, 1, 2, 4)$ and $F2(A, B, C) = \sum(0, 5, 6, 7)$	<i>CO2</i>	<i>PO2</i>	08
	c)	Explain carry look ahead generation with the help of logic diagram (4-bit).	<i>CO2</i>	<i>PO2</i>	08
OR					
3	a)	Design a 2-bit magnitude comparator to compare two 2 bit number with logic diagram.	<i>CO2</i>	<i>PO2</i>	10
	b)	Implement the following Boolean pairs using a decoder with minimum input gates $F1(a, b, c) = \pi M(1, 2, 4, 6)$ $F2(a, b, c) = \pi M(2, 4, 7)$	<i>CO2</i>	<i>PO2</i>	04
	c)	Design a 3-bit binary to gray code converter using a ROM.	<i>CO2</i>	<i>PO2</i>	06
UNIT - III					
4	a)	What is race around condition in flip flops? Explain how it can overcome?	<i>CO2</i>	<i>PO2</i>	06
	b)	Convert JK flip flop to D flip flop.	<i>CO3</i>	<i>PO3</i>	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Design a synchronous Mod-6 (count sequence 0, 1, 2, 3, 4, 5) counter using clocked D flip-flops.	CO2	PO2	08
		OR			
5	a)	Explain the working of a Master-slave JK flip flop with functional table and timing diagram.	CO2	PO2	08
	b)	Design a 4-bit ripple up counter using negative edge triggered JK flip flops	CO3	PO3	05
	c)	Convert with the help of function table and excitation table JK flip flop to SR flip flop.	CO2	PO2	07
		UNIT - IV			
6	a)	Construct the excitation table, transition table, state table and state diagram for the synchronous sequential circuit shown in Figure 6.a	CO3	PO3	12
		Figure 6.a			
	b)	<p><u>State Assignment</u> <u>a:00</u> <u>b:01</u>, <u>c:10</u>, <u>d:11</u></p> <p>Design a sequential circuit for the above state diagram using T-FFs</p>	CO3	PO3	08
		UNIT - V			
7	a)	Design a CMOS inverter and explain its operation. Compare its characteristics over TTL logic families such as Fan - in, Fan - out, power dissipation, propagation delay, switching speed and noise margin.	CO1	PO1	14
	b)	With circuit schematic explain the working of a two - input TTL NAND gate.	CO1	PO1	06
