

B.M.S. College of Engineering, Bengaluru-560019

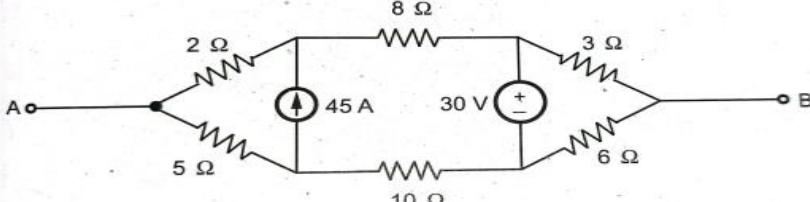
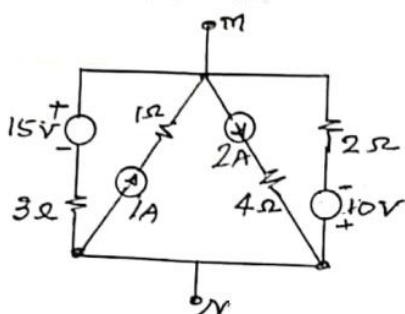
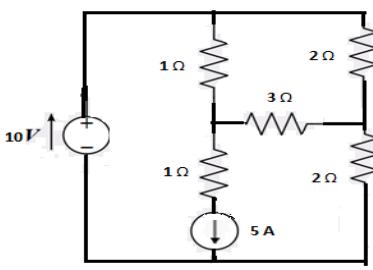
Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

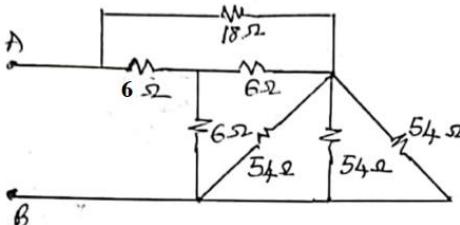
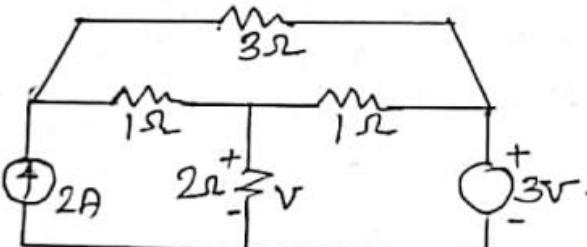
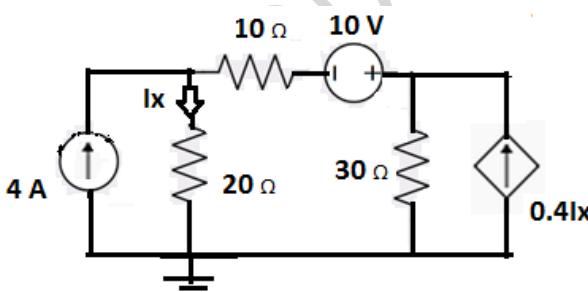
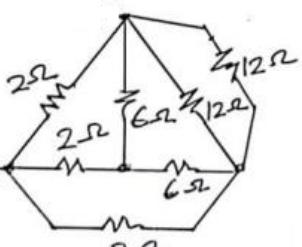
Programme: B.E.

Branch: ES Cluster (EEE/ET/ECE/EIE/MD)

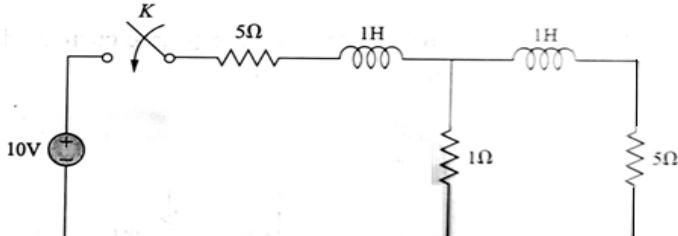
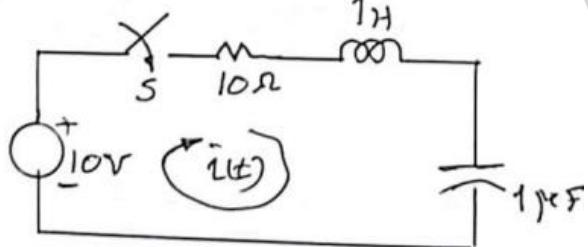
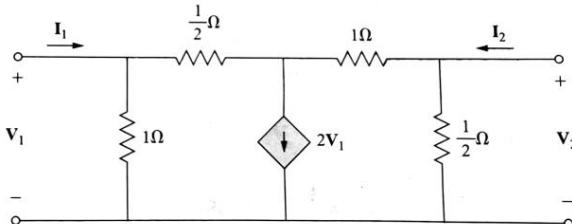
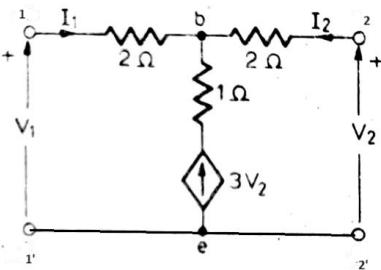
Course Code: 19ES3CCECA




Course: Electrical Circuit Analysis

Semester: III





Duration: 3 hrs.

Max Marks: 100





Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	<p>Reduce the network shown in the Fig.1(a) to a single voltage source in series with a resistance using source shifting and source transformations.</p> <p>Fig.1(a)</p>	CO1	PO1	06
	b)	<p>In the circuit shown in Fig.1(b), determine the equivalent voltage source across the terminals M-N using source transformations.</p> <p>Fig.1(b)</p>	CO1	PO1 ,2	07
	c)	<p>In the circuit shown in Fig.1(c), find all the loop currents by mesh analysis.</p> <p>Fig. 1(c)</p>	CO1	PO1 ,2	07

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

OR					
2	a)	Find the voltage to be applied across the terminals A-B of the network shown in fig. 2a, such that the current drawn by the circuit is 10 A.	CO1	PO1 ,2	06
		Fig.2(a)			
	b)	Using source shifting technique, calculate the voltage V in the network shown in fig.2(b).	CO1	PO1 ,2	07
		Fig.2(b)			
	c)	In the circuit shown in Fig. 2(c), calculate 'Ix' using node analysis.	CO1	PO1 ,2	07
		Fig.2(c)			
UNIT - II					
3	a)	Obtain an expression for the resonant frequency of a practical parallel resonant circuit, and find the condition at which such a circuit resonates at all frequencies. What happens to this equation if the capacitor is an ideal one?	CO2	PO1	08
	b)	For the network shown in fig. 3(b) draw the graph and select a tree and develop the cut-set and tie-set schedules.	CO2	PO1 ,2	08
		Fig.3(b)			

	c)	Construct the dual circuit of the network shown in figure 3(c), by direct inspection (dot) method.	CO2	PO1 ,2	04
		Fig.3(c)			
		UNIT - III			
4	a)	In the circuit shown in Fig.4(a), find the current using Superposition principle.	CO2	PO1 ,2	06
		Fig.4(a)			
	b)	Obtain the Norton's equivalent circuit of the network shown in Fig. 4(b).	CO2	PO1 ,2	06
		Fig.4(b)			
	c)	Define the maximum power transfer theorem for a pure variable load resistance and determine the load impedance for maximum power transfer through it and also find the maximum power.	CO2	PO1 ,2	08
		Fig. 4(c)			
		UNIT - IV			
5	a)	Briefly explain the behaviour of elements R, L and C at the initial at $t = 0+$ and final at $t = \infty$	CO3	PO1	06
	b)	Determine the (i) initial value of $F_1(s) = \frac{(s+1)}{s^2 + 2s + 10}$ and the final value of $F_2(s) = \frac{10}{(s+1)^2 + 100}$ using the initial and final value theorems and verify the results by any other method.	CO3	PO1 ,2	08

	c)	Sketch the unit step, unit ramp and unit parabolic input signals, write the mathematical equations for each and what is the Laplace transformations.	CO3	PO1 ,2	06
		OR			
6	a)	Explain the initial condition of resistor and inductor.	CO3	PO1	04
	b)	In the circuit shown the find the second loop current I_2 using Laplace transformations with all the initial conditions zero.	CO3	PO1 ,2	08
	c)	What are initial conditions and what is its importance and in the circuit shown in fig.6c the switch is closed at $t=0$ with zero initial conditions. Find i , Di and D^2i at $t = 0+$	CO3	PO1 ,2	08
		Fig.6c			
		UNIT - V			
7	a)	Obtain expressions for representing the Z-parameters in terms of T-parameters.	CO4	PO1	06
	b)	Define h-parameters and find the y-parameters of the network shown in fig.7(b).	CO4	PO1 ,2	07
		Fig.7(b)			
	c)	Define T-parameters and find the h - parameters of the network shown in Fig. 7c	CO4	PO1 ,2	07
		Fig.7c			
