

B.M.S.College of Engineering, Bengaluru-560019

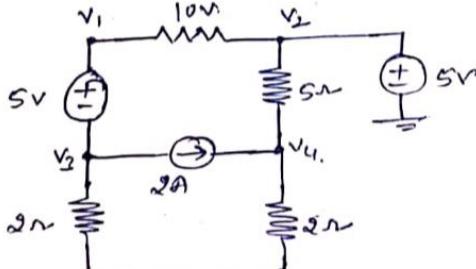
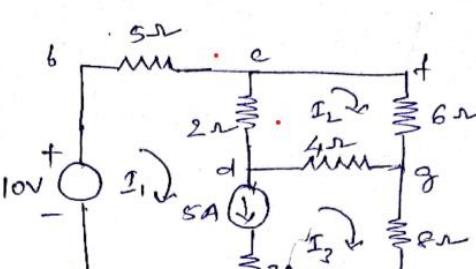
Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

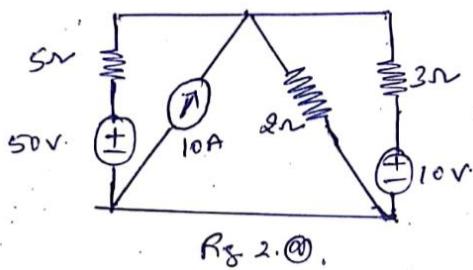
Programme: B.E.

Branch: ES Cluster (EEE/ET/ECE/EIE/MD)

Course Code: 19ES3CCECA

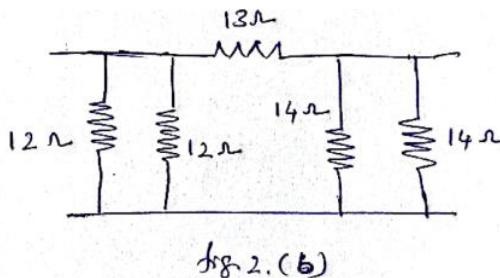


Course: Electrical Circuit Analysis

Semester: III

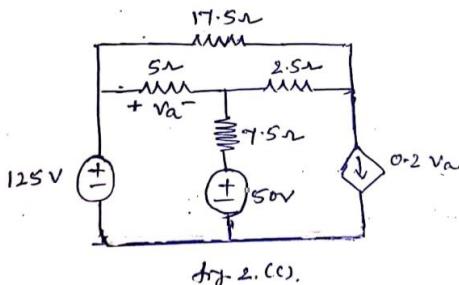

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.


UNIT - I			CO	PO	Marks
1	a)	Distinguish the following: i) Active and Passive elements ii) Linear and Non-linear elements iii) Unilateral & Bilateral Elements	CO1	PO1	06
	b)	For the network shown below, determine the node voltages V_1, V_2, V_3 and V_4 using Nodal analysis for the fig.1.(b) fig. 1.(b)	CO1	PO2	07
	c)	Use mesh current analysis to find the various currents flowing in the network shown in fig.1(c) fig. 1.(c)	CO1	PO1	07
		OR			
2	a)	Find the power delivered by 50V source shown in fig.2 (a) using source transformation.	CO1	PO1	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.


b)

Three impedances are connected in star. Obtain expression for the ir delta connected equivalent. Also find the star equivalent of the following circuit shown in fig.2 (b)

c)

Find the total power delivered in the circuit using mesh-current method shown in fig.2 (c)

UNIT - II

3

a) Define with example: (i) Oriented graph (ii)Tree (iii) Fundamental cut set

CO1 PO2

07

b)

Explain with examples the principles of duality

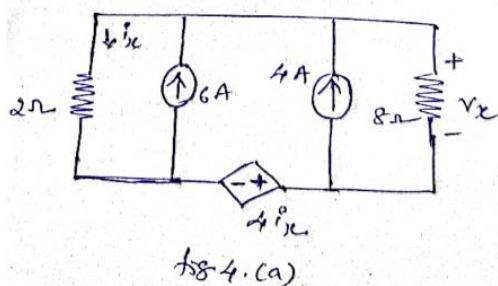
CO2 PO2

07

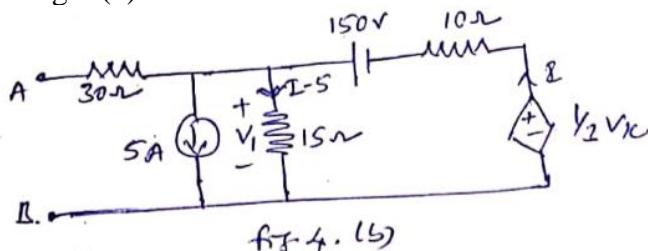
c)

The reduced incidence matrix of a graph of a network is given below. Draw the oriented graph corresponding to it.

$$\left(\begin{array}{cccccc} -1 & +1 & 0 & 0 & 0 & -1 \\ 0 & -1 & -1 & +1 & 0 & 0 \\ 0 & 0 & +1 & 0 & -1 & +1 \end{array} \right)$$


UNIT - III

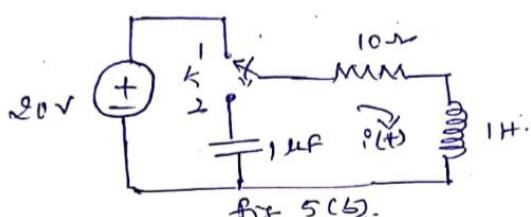
4


a) Use superposition theorem to find V_x in the circuit shown in fig.4 (a)

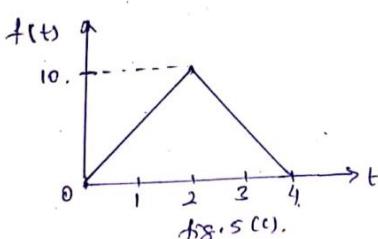
CO2 PO1

10

b) Calculate Thevenins equivalent circuit across AB for the network shown in fig.4 (b)



UNIT - IV


5 a) State and prove initial and final value theorems

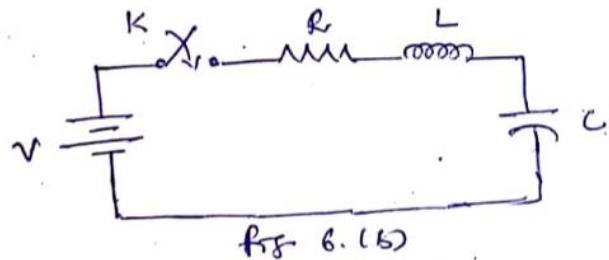
CO2 PO2 10

b) In the circuit shown fig.5 (b). Switch K is changed from 1 to 2 at $t=0$, steady state having been attained in position 1. Find the values of i , di/dt and d^2i/dt^2 at $t=0+$.

c) Obtain the Laplace transform of the function shown in fig.5 (c)

CO3 PO1 05

CO3 PO2 07


6 a) What is initial condition, explain the effect of initial condition on the elements of network?

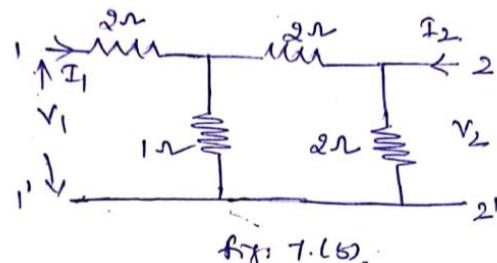
CO3 PO1 06

OR

b) In the circuit shown in fig.6 (b), $V=10V$, $R=10\Omega$, $L=1H$, $C=0.1\mu F$ and $V_C(0)=0$. Find $i(0+)$, $di(0+)/dt$ and $d^2i(0+)/dt^2$

CO3 PO2 07

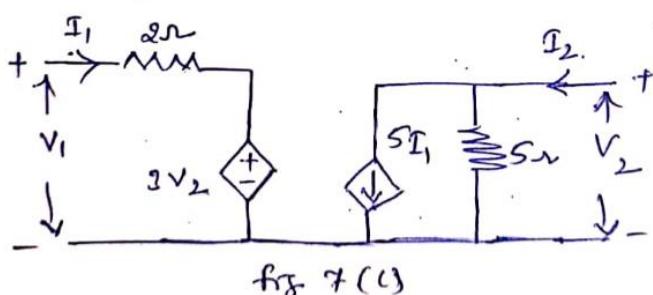
c) Find the Laplace transform of the waveform shown in fig.6 (c)



UNIT - V

7 a) Write a note on h parameters

CO3 PO2 07


b) Determine the Z parameters for the circuit shown in fig.7 (b)

c) Determine the transmission parameters for the network shown in fig.7 (c)

CO4 PO1 06

CO4 PO2 06
