

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

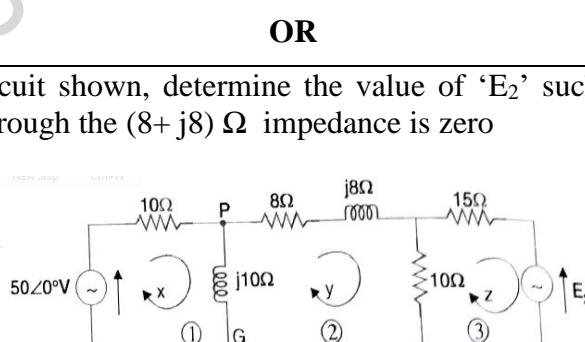
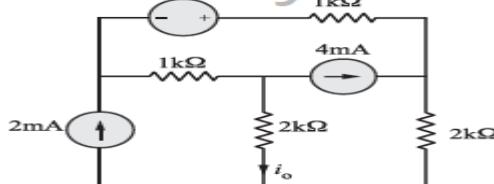
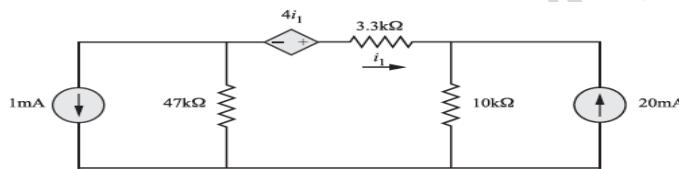
Programme: B.E.

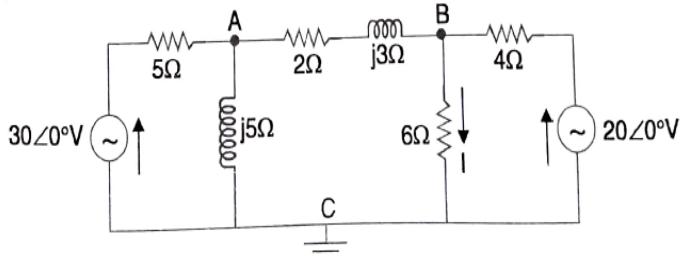
Branch: ES Cluster (EEE/ET/ECE/EIE/MD)

Course Code: 19ES3CCECA

Course: Electrical Circuit Analysis

Semester: III

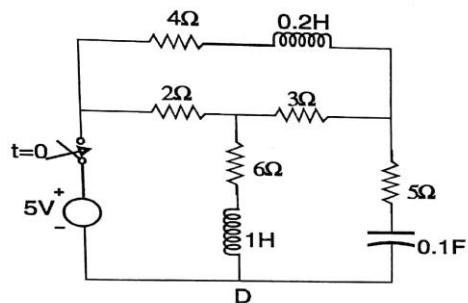



Duration: 3 hrs.


Max Marks: 100

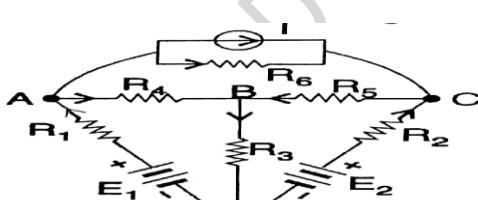
Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Determine the current 'i ₁ ' using source transformation for the circuit shown Figure	CO2	PO1	08
	b)	Apply supermesh concept, determine the current 'I ₀ '	CO2	PO1	06
	c)	Derive the expression for star to delta converter	CO1	PO1	06
OR					
2	a)	In the circuit shown, determine the value of 'E ₂ ' such that the current through the $(8 + j8) \Omega$ impedance is zero	CO2	PO1	10
	b)	In the network shown in figure, find the current 'I' by node-voltage method	CO2	PO1	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.



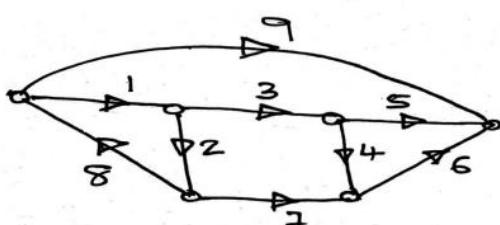
UNIT - II

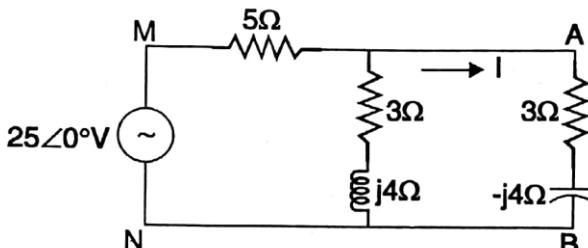
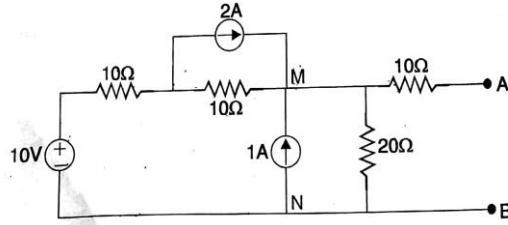
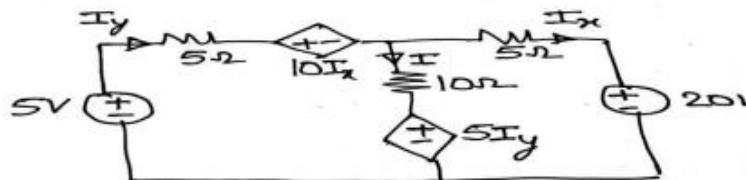

3 a) Derive the expression for resonant frequency in terms half power frequencies.

CO2 PO2 **08**

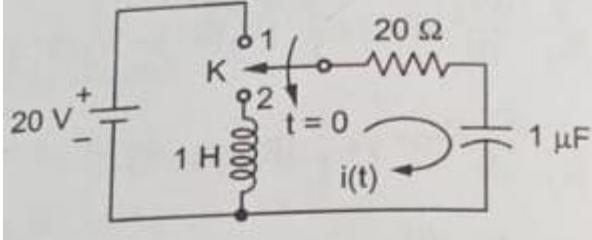
b) Construct the dual of the network shown in the figure

c) For the network shown in figure draw the network graph, select a tree and write a tie-set schedule.

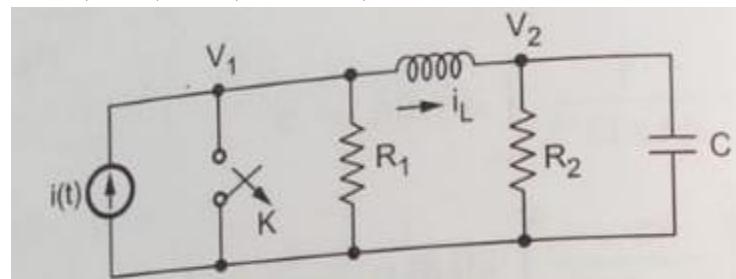

OR

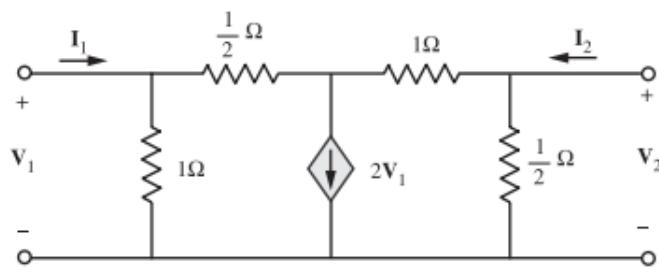
4 a) A series RLC network has $R=10 \Omega$, $L=0.3H$, $C=100\mu F$. Determine the following (i) resonant frequency (ii) bandwidth (iii) Quality factor (iv) Half power frequencies


CO2 PO2 **10**

b) Selecting 1,2,3,4 and 5 as tree branches for the graph shown in figure 4b Obtain Tie-set matrix, Cut-set matrix and corresponding equations


CO2 PO2 **10**

UNIT - III					
5	a)	In the network shown in figure, apply the reciprocity theorem to determine the current 'I' in (3-j4) impedance shown network.	CO2	PO2	10
	b)	Find the thevenins equivalent circuit at the terminals 'AB' for the network shown in figure and hence determine the power dissipated in a 5 ohm resistor connected between A and B.	CO2	PO2	10
OR					
6	a)	State and Prove maximum power transfer theorem	CO2	PO2	10
	b)	Find I_x using thevenin's theorem for the circuit shown in fig 6b.	CO2	PO2	10
UNIT - IV					
7	a)	State and prove initial value and final value theorem	CO3	PO1	10
	b)	Find the Laplace transform of the waveform shown in figure	CO3	PO2	10
OR					
8	a)	In the circuit as shown in the Fig, the switch K is changed from position 1 to 2 at $t=0$. The steady state having been reached before switching find values of $i(t)$, $di(t)/dt$ and $d^2i(t)/d(t^2)$ at $t=0^+$.	CO3	PO2	10



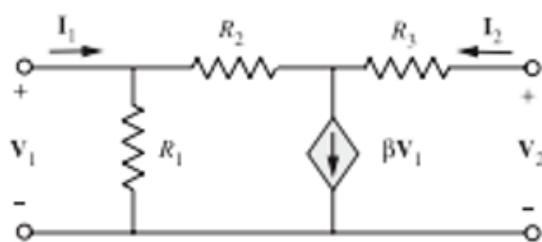
b) The network shown in figure has two independent node pairs of the switch K is opened at $t=0$, Calculate the following quantities at $t=0$ i)V₁ ii)V₂ iii)dV₁/dt iv)dV₂/dt

UNIT - V

9 a) Determine the y-parameters for the two-port network shown in Figure

b) Define Z parameter. Derive h parameter in terms of Z parameter

CO3 PO2 10


OR

10 a) Define ABCD parameter. Derive h parameter in terms of T parameter

CO4 PO1 10

b) Determine the z parameters for the two port network shown in Figure.

CO4 PO2 10
