

B.M.S. College of Engineering, Bengaluru-560019

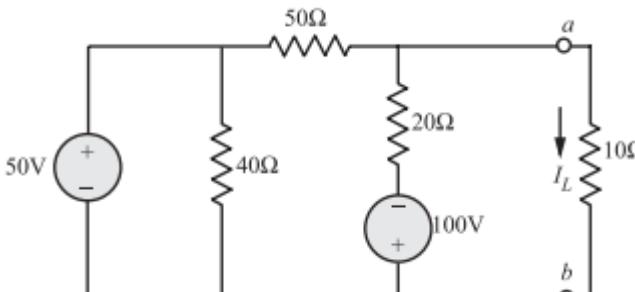
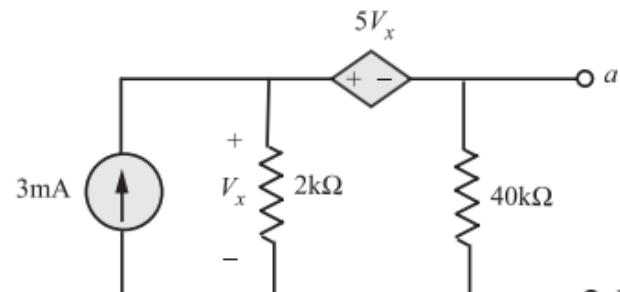
Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

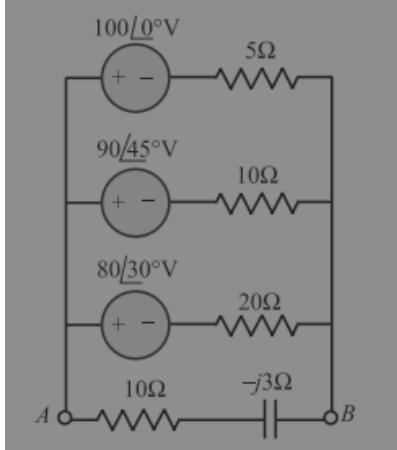
Programme: B.E.

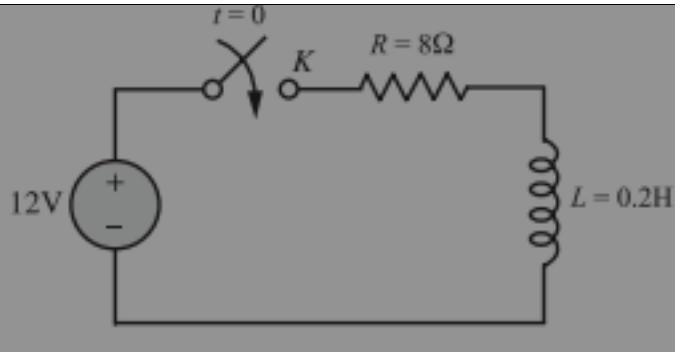
Branch: ES Cluster (EEE/ET/ECE/EIE/MD)

Course Code: 22ES3PCECA



Course: Electrical Circuit Analysis

Semester: III


Duration: 3 hrs.


Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)		CO1	PO1	07
		<p>Fig 1.1 For the circuit shown in Fig 1.1 find I_L using nodal analysis</p>			
	b)		CO1	PO1	07
		<p>Fig 1.2 Determine the voltage across a and b using mesh analysis for the circuit shown in Fig 1.2</p>			
	c)	Explain the concept of source shifting using an example	CO1	PO1	06
		OR			
2	a)	Derive the expression for star resistances in terms of delta resistances	CO1	PO1	07

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	<p>Fig 2.2 Using source transformation find current through AB.</p>	CO1	PO1	07
	c)	Explain the concept of super mesh with an example	CO1	PO1	06
UNIT - II					
3	a)	Derive the expression for bandwidth for both series and parallel resonant circuit.	CO1	PO1	10
	b)	In a series circuit $R = 6\Omega$, $\omega_0 = 4.1 \times 10^6$ rad/sec, band width = 10^5 rad/sec. Compute L, C, half power frequencies and Q.	CO1	PO1	10
UNIT - III					
4	a)	<p>fig 3.1 For the circuit shown in fig 3.1 find the current flowing through 80Ω resistor using thevenin's theorem and verify the same using norton's theorem</p>	CO2	PO2	10
	b)	State and prove maximum power transfer theorem for AC circuits	CO2	PO2	10
UNIT - IV					
5	a)	In the given network, K is closed at $t=0$, with zero current in the inductor. Find the values of i , di/dt , d^2i/dt^2 at $t=0+$	CO2	PO2	07

b) State and prove initial value theorem

06

c) Find the Laplace transform of a periodic square wave shown in fig 5.2

CO2

PO2

07

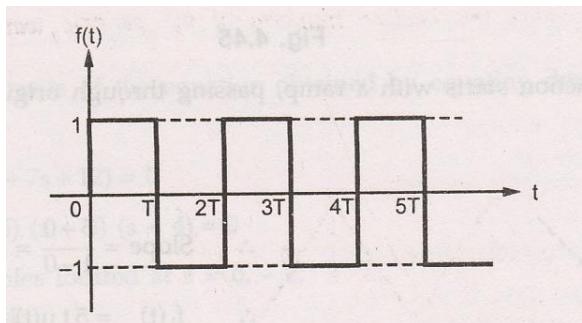
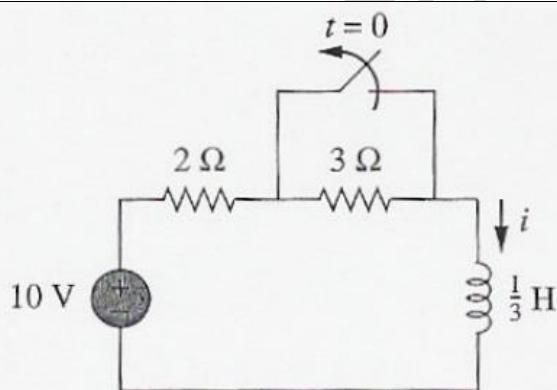



Fig 5.2

OR

6

a)

Assume the circuit shown in fig 6.1 has been closed for a long time. Find i at $t=0^+$ and i at $t=\infty$

CO2

PO2

06

b)

Discuss the initial and final conditions in passive network elements

-

-

06

c)

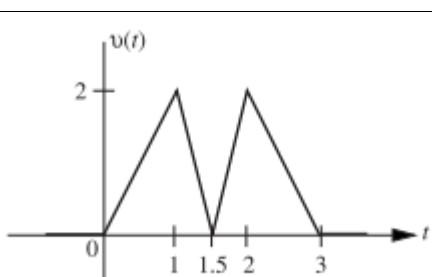


Fig 6.2

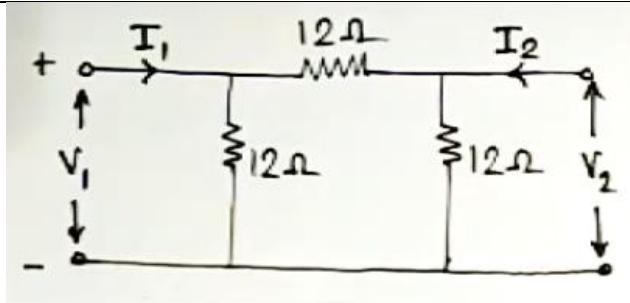
Find the laplace transform of $v(t)$ as shown in Fig 6.2

CO2

PO2

08

UNIT - V


7 a) Define T parameter

- - **04**

b) Derive Z parameters in terms of H parameters.

CO1 PO1 **08**

c)

CO2 PO2 **08**

Find h parameters for the circuit shown in fig 7.1
