

# B.M.S. College of Engineering, Bengaluru-560019

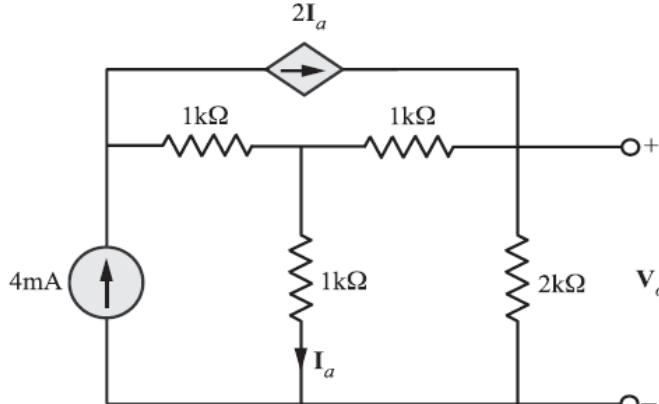
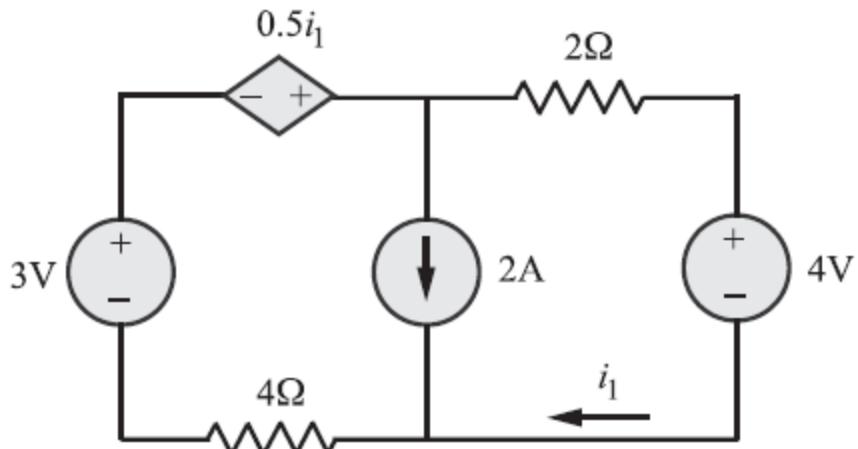
Autonomous Institute Affiliated to VTU

## January / February 2025 Semester End Main Examinations

**Programme: B.E.**

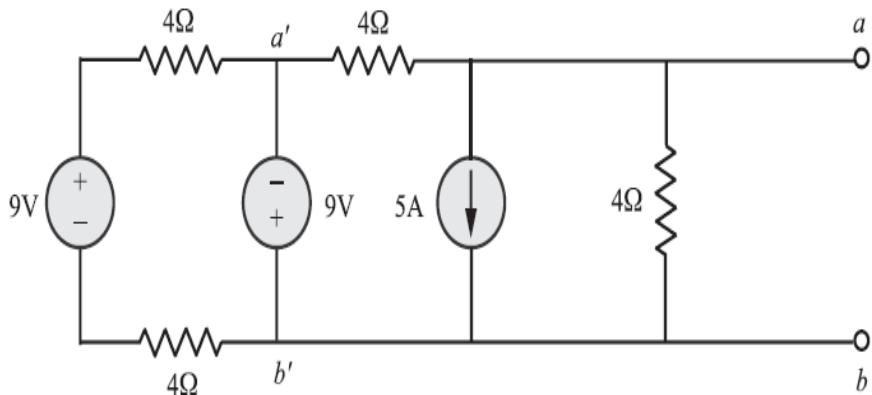
**Semester: III**

**Branch: ETE, EIE**



**Duration: 3 hrs.**

**Course Code: 22ES3PCECA**

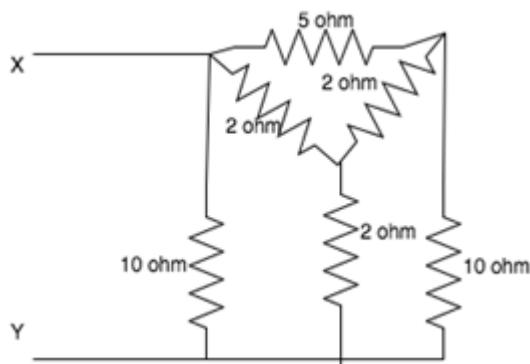
**Max Marks: 100**


**Course: Electric Circuit Analysis**

**Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.  
2. Missing data, if any, may be suitably assumed.

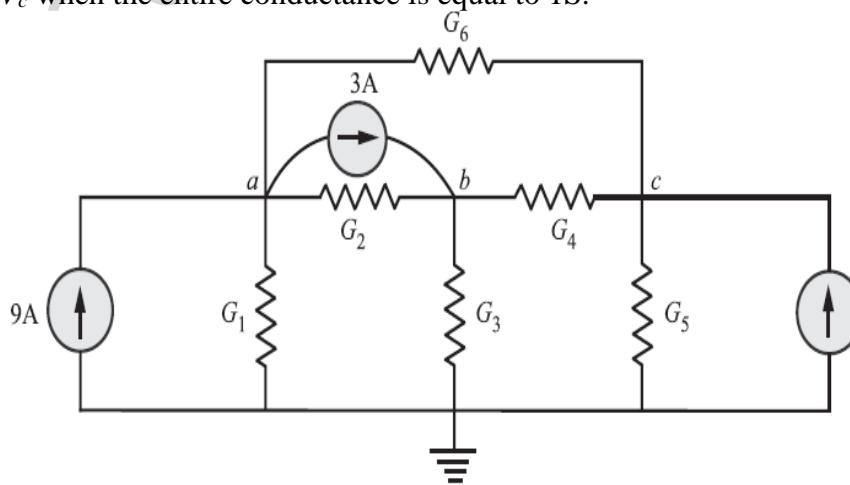
| UNIT - I |    |                                                                                                         | CO  | PO  | Marks     |
|----------|----|---------------------------------------------------------------------------------------------------------|-----|-----|-----------|
| 1        | a) | Determine $V_o$ using mesh analysis for the circuit shown in figure(1.1)                                | CO2 | PO1 | <b>06</b> |
|          |    |  <p>Figure(1.1)</p>  |     |     |           |
|          | b) | Referring to the circuit shown in figure (1.2) Determine the current $i_1$ .                            | CO2 | PO1 | <b>08</b> |
|          |    |  <p>Figure(1.2)</p> |     |     |           |

**Important Note:** Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.


- c) Use source transformation to convert the circuit shown in figure (1.3) to a single current source in parallel with a single resistor.



Figure(1.3)


OR

- 2 a) Find the equivalent resistance between X and Y for the circuit shown in figure(2.1)



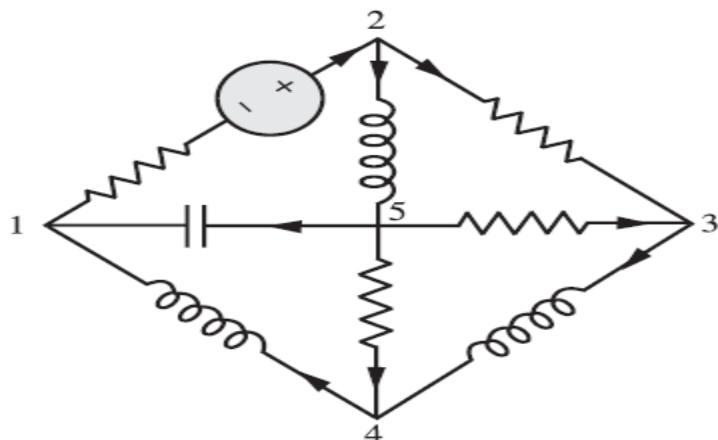
Figure(2.1)

- b) Refer the circuit shown in figure (2.2).Find the three node voltage  $V_a$ ,  $V_b$   $V_c$  when the entire conductance is equal to 1S.



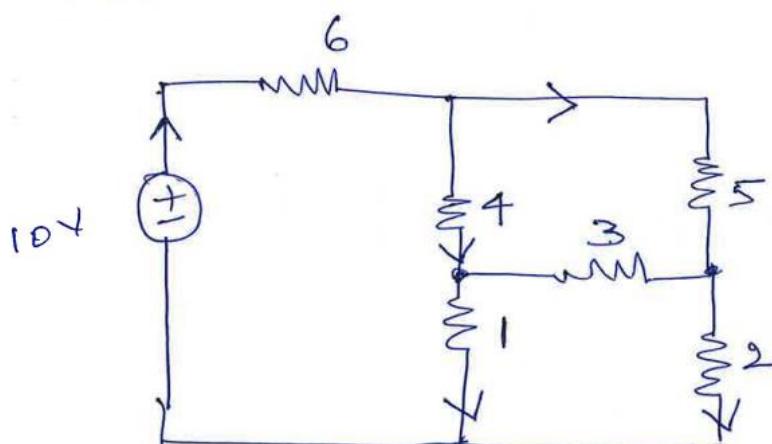
Figure(2.2)

CO2 PO1 06

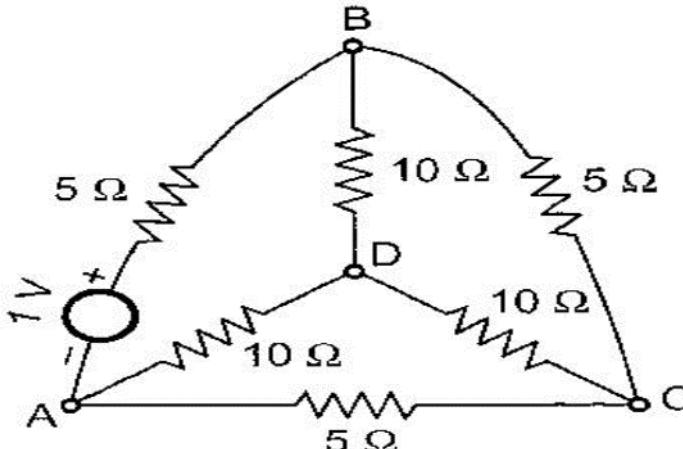
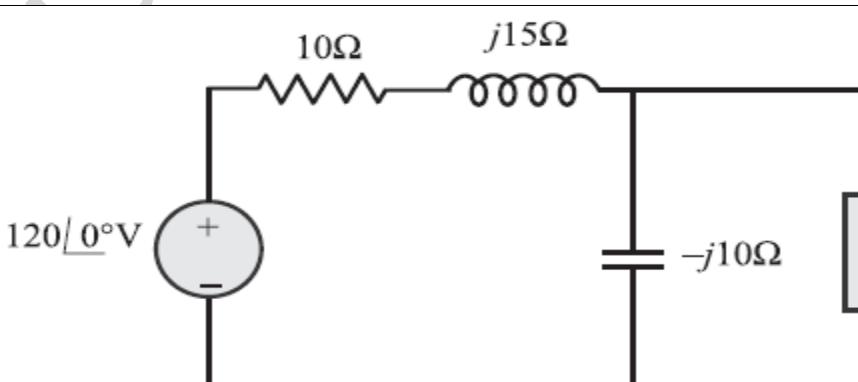

CO2 PO1 06

CO2 PO1 08

|  |    |                                                                                                          |     |     |    |
|--|----|----------------------------------------------------------------------------------------------------------|-----|-----|----|
|  | c) | <p>Find the current <math>i_2</math> and voltage <math>v</math> for the circuit shown in figure(2.3)</p> | CO2 | PO1 | 06 |
|  |    | Figure(2.3)                                                                                              |     |     |    |


### UNIT - II

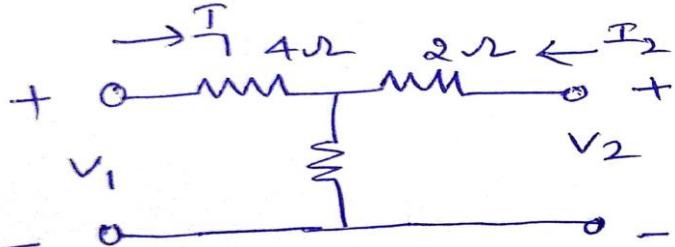
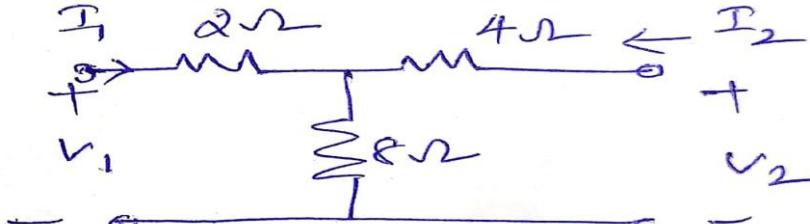
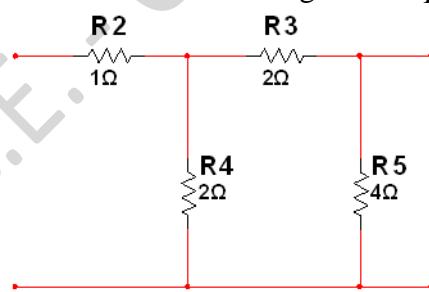
|   |    |                                                                                       |     |     |    |
|---|----|---------------------------------------------------------------------------------------|-----|-----|----|
| 3 | a) | Refer to the network shown in figure (3.1).Obtain the corresponding incidence matrix. | CO2 | PO1 | 06 |
|---|----|---------------------------------------------------------------------------------------|-----|-----|----|


figure(3.1)

|  |    |                                                                                                                                                                                                                                                                               |     |     |    |
|--|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|----|
|  | b) | In the network given below, consider branches 1, 3, 4 forming a tree. Write a tie set schedule and hence write equilibrium equations on loop current basis and find the values of loop current. Consider that the branch number indicates value of resistance in that branch. | CO2 | PO1 | 08 |
|--|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|----|






Figure(3.2)

|   |    |                                                                                                                                                                                                                                                                                                                                                                                                         |     |     |           |
|---|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----------|
|   | c) | <p>A series RLC circuit consists of <math>R=1K</math> of an inductance of <math>100mH</math> in series with a capacitance of <math>10pF</math>. If <math>100V</math> is applied as input across the combination determine</p> <ol style="list-style-type: none"> <li>Resonant Frequency</li> <li>Maximum current in the circuit</li> <li>Q factor of circuit</li> <li>Half power frequencies</li> </ol> | CO2 | PO1 | <b>06</b> |
|   |    | <b>OR</b>                                                                                                                                                                                                                                                                                                                                                                                               |     |     |           |
| 4 | a) | Show that the resonant frequency is the geometric mean of the two half power frequencies                                                                                                                                                                                                                                                                                                                | CO2 | PO1 | <b>05</b> |
|   | b) | Write the tie set matrix and obtain the network equilibrium equations. Calculate loop currents and branch voltages. Choose AD, BD and CD as tree branches.                                                                                                                                                                                                                                              | CO2 | PO1 | <b>10</b> |
|   | c) |                                                                                                                                                                                                                                                                                                                      | CO2 | PO1 | <b>05</b> |
|   |    | <b>UNIT - III</b>                                                                                                                                                                                                                                                                                                                                                                                       |     |     |           |
| 5 | a) |                                                                                                                                                                                                                                                                                                                     | CO2 | PO2 | <b>10</b> |
|   |    | Figure(4.1)                                                                                                                                                                                                                                                                                                                                                                                             |     |     |           |
|   |    | For the circuit shown in figure(4.1):                                                                                                                                                                                                                                                                                                                                                                   |     |     |           |
|   |    | a) What is the value of $Z_L$ that will absorb the maximum average power?                                                                                                                                                                                                                                                                                                                               |     |     |           |
|   |    | b) What is the value of maximum power?                                                                                                                                                                                                                                                                                                                                                                  |     |     |           |

|   |    |                                                                                                                                                               |     |     |           |
|---|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----------|
|   | b) | <p>Find the Thevenin and Norton equivalent circuits at the terminal a-b for the circuit in figure(4.2)</p>                                                    | CO2 | PO2 | <b>10</b> |
|   |    | <b>OR</b>                                                                                                                                                     |     |     |           |
| 6 | a) | <p>Find the value of load resistance for which max power is transferred and find the power transferred to the load.</p>                                       | CO2 | PO2 | <b>10</b> |
| 6 | b) | <p>Find the Thevenins equivalent voltage across the terminals a and b of the network.</p>                                                                     | CO2 | PO2 | <b>10</b> |
|   |    | <b>UNIT - IV</b>                                                                                                                                              |     |     |           |
| 7 | a) | <p>Refer the circuit shown in figure (5.1) Find <math>i_1(0^+)</math> and <math>i_L(0^+)</math>.The circuit is in steady state for <math>t &lt; 0</math>.</p> | CO2 | PO2 | <b>06</b> |

Figure(5.1)

|   |    |                                                                                                                                                                                                |     |     |           |
|---|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----------|
|   | b) | <p>The switch is closed for a long time. Find <math>i_L</math> for all 't' after switch opens at <math>t=0</math></p> <p>Figure (5.2)</p>                                                      | CO2 | PO2 | <b>08</b> |
|   | c) | <p>Using the convolution theorem, find the Laplace transform of the following functions</p> <p>i) <math>F(s) = \frac{1}{s(s+1)}</math></p> <p>ii) <math>F(s) = \frac{1}{(s-a)^2}</math></p>    | CO2 | PO1 | <b>06</b> |
|   |    | <b>OR</b>                                                                                                                                                                                      |     |     |           |
| 8 | a) | <p>Find the Laplace Transform of <math>x(t)</math> shown in figure (6.1)</p> <p>Figure(6.1)</p>                                                                                                | CO2 | PO2 | <b>06</b> |
|   | b) | <p>In the network, switch is opened at <math>t = 0</math>. At <math>t = 0^+</math>, solve for the values of <math>V</math>, <math>\frac{dV}{dt}</math>, and <math>\frac{d^2V}{dt^2}</math></p> | CO2 | PO2 | <b>10</b> |
|   | c) | <p>State and prove convolution theorem.</p>                                                                                                                                                    | CO2 | PO1 | <b>04</b> |

| UNIT - V |    |                                                                                                                                                                 |     |     |    |
|----------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|----|
| 9        | a) | Determine the admittance parameters of the T network as shown in figure 7.1                                                                                     | CO2 | PO1 | 10 |
|          |    |  <p>Figure(7.1)</p>                                                           |     |     |    |
|          | b) | Find the hybrid parameters for the two port network shown in figure(7.2)                                                                                        | CO2 | PO1 | 10 |
|          |    |  <p>Figure(7.2)</p>                                                          |     |     |    |
| OR       |    |                                                                                                                                                                 |     |     |    |
| 10       | a) | Find the h parameters of the network and give its equivalent circuit.                                                                                           | CO2 | PO1 | 10 |
|          |    |                                                                              |     |     |    |
|          | b) | The Z-Parameters of a two port network are $Z_{11} = 20\Omega$ , $Z_{22} = 30\Omega$ , $Z_{12} = Z_{21} = 10\Omega$ . Find the Y-Parameters and ABCD parameters | CO2 | PO1 | 10 |

\*\*\*\*\*