

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

Programme: B.E.

Branch: ES Cluster (EEE/ECE)

Course Code: 19ES3GCFTH

Course: FIELD THEORY

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Write the expression of divergence \vec{D} in Cartesian, cylindrical and spherical systems.	CO1	PO2	07
	b)	A 100 nC point charge is located at $\vec{A}(-1, 1, 3)$ in free space. i) Find the locus of all points $\vec{P}(x, y, z)$ at which $E_x=500$ V/m Find Y_1 if $\vec{P}(-2, Y_1, 3)$ lies on that locus.	CO1	PO2	06
	c)	State and explain Gauss law. Find electric field intensity at a distance 'r' from an infinite line charge using Gauss law.	CO1	PO1	07
UNIT - II					
2	a)	Calculate the work done in moving a point 4 C charge from B(1,0,0) to A(0,2,0) along the path $y=2^{-2x}$, $z=0$ in the field $E=5xa_x$ V/m and $\vec{E}=5xa_x+5ya_y$ V/m.	CO2	PO4	08
	b)	Develop and analyze an expression for boundary conditions between two perfect dielectrics.	CO2	PO3	06
	c)	Define continuity equation and write the point form of the continuity equation of the current.	CO2	PO2	06
OR					
3	a)	Evaluate both sides of the divergence theorem for the field $2xy\hat{a}_x+x^2\hat{a}_y$ C/m ² and the rectangular parallelepiped formed by the planes $x=0$ and 1, $y=0$ and 2, and $z=0$ and 3.	CO3	PO2	07
	b)	Define electric field intensity. Also show that the electric field intensity is the negative gradient of potential.	CO3	PO2	07
	c)	Define potential difference. Find the potential difference between two points due to an infinite line charge.	CO3	PO2	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III					
4	a)	From Gauss's law, obtain poisson's and laplace's equation. Write laplace's equation in explicit form in all coordinates systems.	CO3	PO2	07
	b)	Obtain poisson's and laplace's equation. Given $V=(A\rho^4+B\rho^{-4})\sin4\phi$. Show that $V(\rho,\phi)$ satisfies laplace's equation.	CO3	PO2	07
	c)	Determine whether or not the following potential fields satisfy the laplace's equation: a) $\vec{V}=x^2-y^2+z^2$ b) $\vec{V}=r\cos\phi+z$ c) $\vec{V}=r\cos\theta+\phi$	CO3	PO2	06
UNIT - IV					
5	a)	A point charge, $Q=-60$ nC, is moving with a velocity 6×10^6 m/s in the direction specified by unit vector $-0.48\vec{a}_x-0.6\vec{a}_y+0.64\vec{a}_z$. find the magnitude of the force on a moving charge in the magnetic field, $B=2\vec{a}_x-6\vec{a}_y+5\vec{a}_z$ mT.	CO4	PO2	05
	b)	Derive the expression for force acting on a differential current element on a straight conductor moving in a steady magnetic field.	CO4	PO2	07
	c)	Find the force per length between two long parallel wires separated by 10 cm in air and carrying a current of 100 A in opposite directions.	CO4	PO1	08
UNIT - V					
6	a)	Explain Faradays law and also develop Maxwell's equations in point form and integral for time varying field	CO4	PO2	07
	b)	Let $\mu = 3 \times 10^{-5}$ H/m, & $\epsilon = 1.2 \times 10^{-10}$ F/m, and $\sigma = 0$ everywhere. If $H = 2 \cos(10^{10} t - \beta_x) a_z$ A/m, use Maxwell's equations to obtain expressions for B, D, E, and β .	CO4	PO2	05
	c)	Develop and analyze an expression for electromagnetic waves in free space.	CO4	PO2	08
OR					
7	a)	A parallel plate capacitor with plate area of 5 cm^2 and plate separation of 3 mm has a voltage of $50\sin10^3t$ volts applied to its plates. Calculate the displacement current assuming $\epsilon=2\epsilon_0$.	CO4	PO2	10
	b)	State and explain poynting theorem.	CO4	PO2	10
