

B. M. S. College of Engineering, Bengaluru - 560019

Autonomous Institute Affiliated to VTU

May 2023 Semester End Main Examinations

Programme: B.E.

Branch: EE/ET/EC

Course Code: 19ES3GCFTH

Course: Field Theory

Semester: III

Duration: 3 hrs.

Max Marks: 100

Date: 19.05.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1. a) Analyze and develop and an expression for EFI (\bar{E}) due to various charge distribution **06**
b) A circular ring of charge with radius 5m lies in z=0 plane with centre at origin. If $\rho_1 = 10\text{nC/m}$. Evaluate the point charge 'Q' placed at the origin which will produce same 'E' at the point (0,0,5)m. **06**
c) Analyse and evaluate both sides of the divergence theorem precisely for the region if the flux density is $\vec{D} = \frac{16}{r} \cos(2\theta) a_\theta \text{C/m}^2$; $1 < r < 2 \text{ m}$, $1 < \theta < 2 \text{ rad}$, $1 < \phi < 2 \text{ rad}$. **08**

UNIT - II

2. a) Analyse and develop an expression for boundary conditions between conductor and free space. **08**
b) Let $J = \frac{25}{\rho} a_\rho - \frac{20}{\rho^2 + 0.01} a_z \text{ A/m}^2$
a) Evaluate the total current crossing the plane $z = 0.2$ in the a_z direction for $\rho < 0.4$.
b) Calculate $\partial \rho_v / \partial t$.
c) Find the outward current crossing the closed surface defined by $\rho = 0.01$, $\rho = 0.4$, $z = 0$, and $z = 0.2$. **06**
c) An Electric field is $\vec{E} = -8xya_x - 4x^2a_y + a_z \text{V/m}$. Analyse and estimate the work done in carrying a 6 C charge from point B(1, 8, 5) to A (2,18, 6) along (i) path $y=3x^2+z$, $z=x+4$ and (ii) straight line from B to A. Show that work done remains same and is independent of the path selected. **06**

OR

3. a) A potential field in free space is expressed as $V = 20/(xyz)V$.
a) Evaluate the total energy stored within the cube $1 < x, y, z < 2$
b) What value would be obtained by assuming a uniform energy density equal to the value at the center of the cube? **08**
b) Analyse and develop an expression for boundary conditions at the interface of conductor and dielectric. **08**
c) List the properties of dielectrics **04**

UNIT - III

4. a) Analyse and develop an expression for Laplace and Poisson's Equations. **10**
Also Verify whether Laplace equation is satisfied or not:
(i) $V = x^2 - y^2 + z^2$ (ii) $V = r\cos\phi + z$ (iii) $V = r\cos\theta + \phi$

b) Write Laplace's equation in spherical co-ordinates. Using this equation analyze and obtain an expression for potential difference between concentric spherical shells. Also find the capacitance of the same **10**

UNIT - IV

5. a) Analyse and Develop an expression for the magnetic field intensity due to Straight Conductor of Finite Length. **07**

b) If $\vec{H} = 10 \sin \theta \hat{a}_\phi$ A/m, analyze and evaluate both sides of the Stokes' theorem for the surface $r = 3$, $0 \leq \theta \leq 90^\circ$, $0 \leq \phi \leq 90^\circ$. Let the surface have the \hat{a}_r direction. **07**

c) Analyse and develop an expression for magnetic boundary conditions between two media of different permeabilities. **06**

UNIT - V

6. a) Write Maxwell's equations in point form and integral form for time varying fields in free space. Describe the relationship between \vec{E} & \vec{H} in free space- using the concept of intrinsic impedance of the medium (η) **07**

b) Let the internal dimension of a co-axial capacitor be $a=1.2$ cm, $b=4$ cm and $l=40$ cm. The homogenous material inside the capacitor the parameters: $\epsilon = 10^{-11}$ F/m, $\mu = 10^{-5}$ H/m and $\sigma = 10^{-5}$ S/m. If the Electric field intensity is $E = \left(\frac{10^6}{\rho}\right) \cos(10^5 t) a_\rho$ V/m, evaluate the following: **05**

- i) Current density \vec{J} .
- ii) The total conduction current ' I_c ' through the capacitor
- iii) The total displacement current ' I_d ' through the capacitor
- iv) The ratio of the amplitude of ' I_d ' to that of ' I_c '

c) Analyze and develop an expression for electromagnetic waves in free space. **08**

OR

7. a) Analyse and develop an expression for uniform plane wave in good conductor **10**

b) State and explain Poynting theorem. Let $\mu = 3 \times 10^{-5}$ H/m, $\epsilon = 1.2 \times 10^{-10}$ F/m, and $\sigma = 0$ everywhere. If $H = 2 \cos(10^{10}t - \beta x) a_z$ A/m, use Maxwell's equations to obtain expressions for B, D, E, and β . **10**
