

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Supplementary Examinations

Programme: B.E.

Branch: ES Cluster (EEE/ET/ECE/EIE/MD)

Course Code: 15ES3GCLCA

Course: Linear Circuit Analysis

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any may suitably assumed.

UNIT - I

1 a) The value of R in the network shown in Fig 1(A) is 15 Ohm. What is the equivalent resistance between A and B terminals. 6

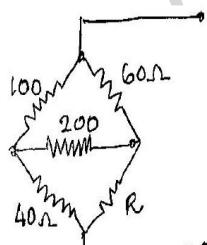


Fig. 1(A).

b) Using the source transformation and source shifting find a single current source in series with a resistance for the network shown in figure 1(B). 8

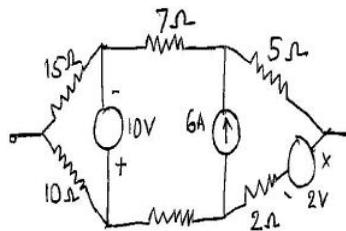


Fig. 1(B)

c) Find the power delivered by the 15 V source in the circuit shown in Fig.1.C by mesh current method. 6

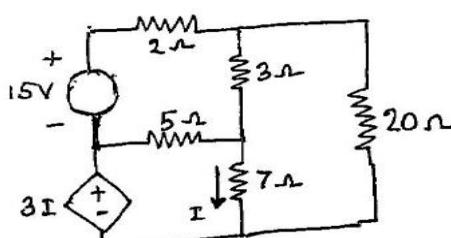


Fig. 1 (C)

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

OR

2 a) The voltage applied across A and B for the network shown in figure 2(A) is 12 V. Find the current I in 8 ohm resistor. 6

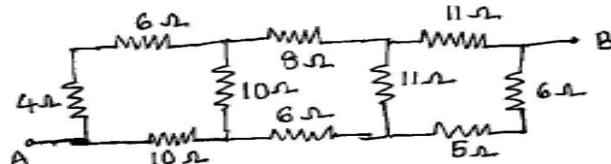


Fig. 2(A)

b) Use loop current method to determine the voltage at all nodes of the network shown in figure 2 (B) 8

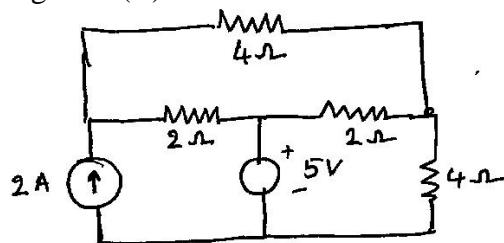


Fig. 2 (B)

c) Find the power delivered by the voltage sources in the circuit shown in figure 2 (C). Use Loop analysis. 6

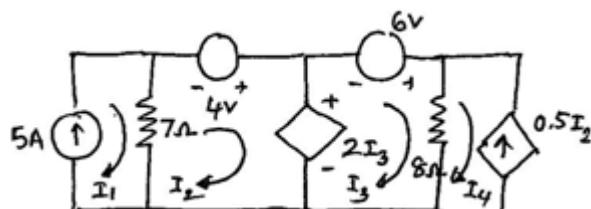


Fig.2(C)

UNIT - II

3 a) The directed graph of a network is shown in figure 3 (A). Choose the tree comprising the branches 1, 2, 3, 4 and 5. Determine the tie-set matrix and cut-set matrix. 8

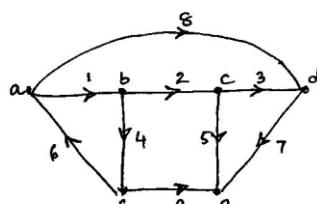


Fig.3 (A)

b) Draw the dual of the network shown in Figure 3 (B). Also write the Mathematical models for the given network and its dual. 6

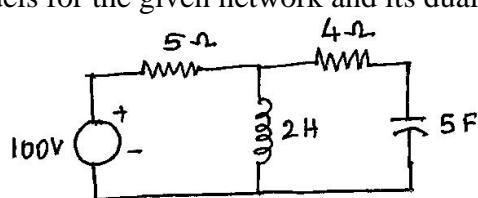


Fig.3 (B)

c) A series RLC circuit has $R = 50$ Ohms, $L = 0.01$ H and $C = 0.04 \mu\text{F}$ and is connected to ac Source of 100 V. 6
 Find (i) the resonance frequency,
 (ii) the half power frequencies
 (iii) the frequency at which voltage across the capacitor is maximum.

UNIT - III

4 a) State and explain superposition theorem. 6
 b) Find the current power in the 1 ohm resistor in the circuit shown in figure 4(B). Use Norton's theorem in figure 4 (B). 8

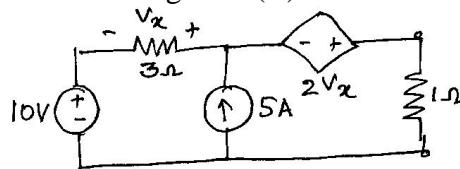


Fig 4 (B)

c) Find the Thevenin's Equivalent circuit across A and B terminals for the circuit shown in figure 4(C). 6

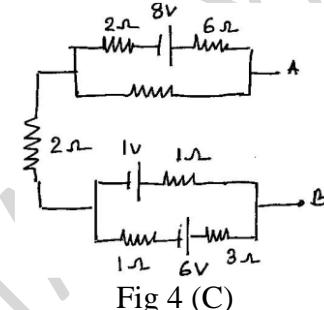


Fig 4 (C)

UNIT - IV

5 a) For the network shown in figure 5 (A), find i_1 , i_2 , $\frac{di_1}{dt}$, $\frac{di_2}{dt}$ and $\frac{d^2i_2}{dt^2}$ at $t = 0^+$. 10

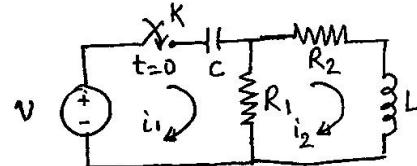


Fig. 5 (A)

b) Synthesize the periodic waveform shown in figure 5(B) and find its Laplace transformation. 10

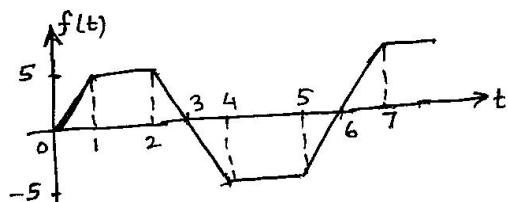


Fig. 5 (B)

OR

6 a) State and prove the following:

6

- (i) initial value theorem
- (ii) Final value theorems.

b) Synthesize the function $x(t)$ shown in figure 6(B) and hence determine the Laplace transform of $x(t)$.

6

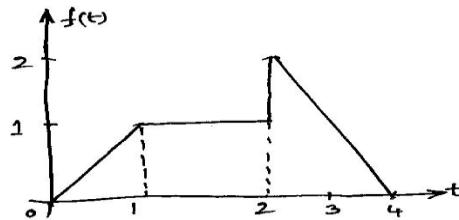


Fig. 6(B)

c) A series R-L circuit with $R = 1$ Ohm and $L = 1$ H is connected in parallel with another series R-C circuit of 2 Ohm resistance and $\frac{1}{2}$ F capacitor are connected across a current source of $2 u(t)$. If the inductor and capacitor were unenergised initially, determine $V_c(t)$ the voltage across the capacitor for $t > 0$. Use Laplace transform.

8

7 a) Determine Y, Z – parameters for the network shown in figure 7(A)

10

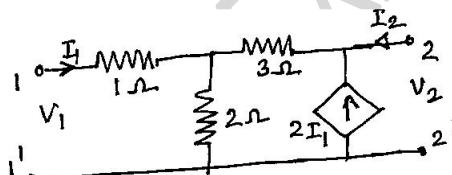


Fig. 7(A)

b) Obtain Z parameters in terms of Y parameters and h in terms of Y parameters.

10
